2023年2月 日本アイソトープ協会 市民向け医療講演会

中性子捕捉療法のための 核医学PET検査

大阪大学大学院医学系研究科 放射線統合医学講座核医学 礒橋佳也子

1

利益相反状態の開示

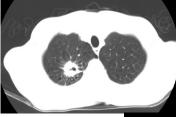
演題発表に関連し、開示すべき利益相反(COI)関係にある企業などはありません。

出典のない画像はすべて自験例です。

本日の内容

- 1. 核医学PET(陽電子放出断層撮影)検査を含む画像診断検査の紹介
- 2. ホウ素中性子捕捉療法(Boron Neutron Capture Therapy; BNCT)
- 3. BNCTのための Four-borono-2-¹⁸F-fluoro-phenylalanine (¹⁸F-FBPA) PET検査

3


3

画像診断検査

病気を発見したり、病気の広がりや性質を調べる 治療方針の立案や予後予測の役割を担う

X線(レントゲン)

CT検査

MRI 検査

画像診断検査の種類

- 1. 一般撮影(レントゲン)、マンモグラフィ、バリウム造影
- 2. 超音波
- 3. CT(X線コンピュータ断層撮影法)
- 4. MRI(核磁気共鳴画像法)
- 5. 血管造影
- 6. 内視鏡(胃カメラ、大腸カメラなど)

形態画像 (かたちを評価)

7. 核医学

一般核医学(ガンマカメラ) SPECT(単一光子放射断層撮影) PET(陽電子放出断層撮影)

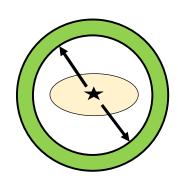
代謝(機能)画像(はたらきを評価)

5

5

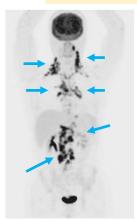
核医学PET(陽電子放出断層撮影)検査

①放射性医薬品 の投与



②待機/撮像

薬剤の体内分布を観察


③撮像/画像化

体内から出る対向する 2本の消滅ガンマ(γ)線 (511keV)を検出

核医学PET検査: 18F-FDG PET(糖代謝機能評価)

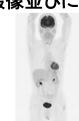
悪性腫瘍に加え、炎症疾患にも保険適用疾患が拡大

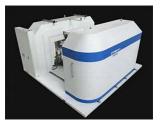
悪性リンパ腫

巨細胞動脈炎活動性病変の評価に優れる

心サルコイドーシス

核医学PET検査:薬剤合成から撮像まで


①陽電子放出核種の生成


②PET製剤の合成

③撮像並びに診断

¹¹C ¹³N ¹⁵O ¹⁸F

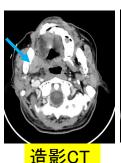
¹⁸F-FDG(保険適用) ¹³N-アンモニア(保険適用) <mark>¹⁸F-FBPA(保険適用外)</mark>

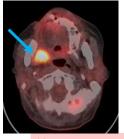
PET用サイクロトロン (住友重機械工業)

自動標識合成装置

PET-CT装置

9


本日の内容


- 1. 核医学PET(陽電子放出断層撮影)検査
- 2. ホウ素中性子捕捉療法(Boron Neutron Capture Therapy; BNCT)
- 3. BNCTのための Four-borono-2-18F-fluoro-phenylalanine (18F-FBPA) PET検査

ホウ素中性子捕捉療法(BNCT)

切除不能な局所進行又は局所再発の頭頸部癌に対して令和2年6月1日から保険診療認可

※ 放射線治療・薬物治療にて治療効果が見込める場合はその治療を優先

¹⁸F-FDG PET

治療要件

ボロファラン(10B)製剤・BNCT治療システムを用いたBNCTを安全に実施するための留意事項/日本中性子捕捉療法学会

『高額療養費制度』 が利用可能

11

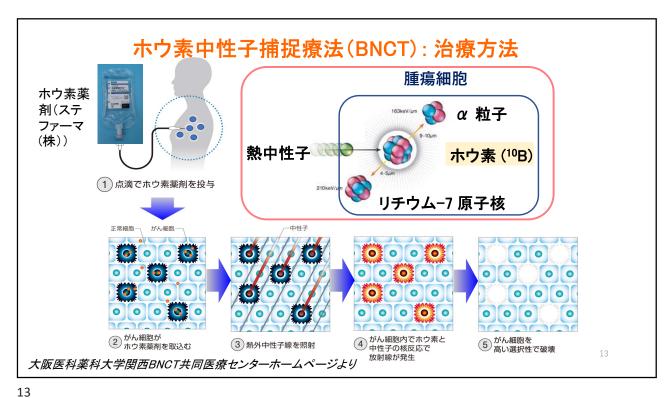
11

ホウ素中性子捕捉療法(BNCT): 医療機器と医薬品の開発と承認

医療機器 (住友重機械工業)

保険適用検査

病院設置可能な小型加速器 BNCT治療システムの承認(世界初)


京都大学・住友重機械工業(株)・ステラファーマ(株)の開発

医薬品 (ステラファーマ(株))

ホウ素薬剤「ステボロニン」の製造 販売承認(世界初)

ステラケミファとステラファーマ(株) の開発 12

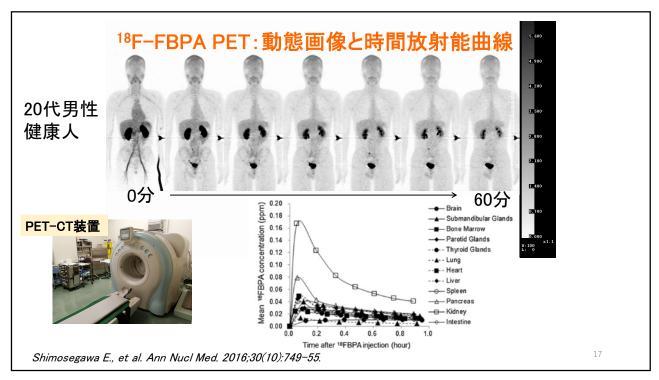
ホウ素中性子捕捉療法(BNCT)と18F-FBPA PETの関係

セラノスティクス Theranostics = 治療 Therapeutics + 診断 Diagnostics

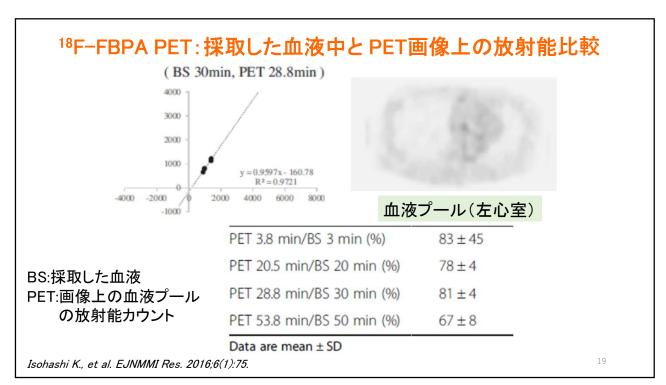
「分子イメージング」(診断の技術)

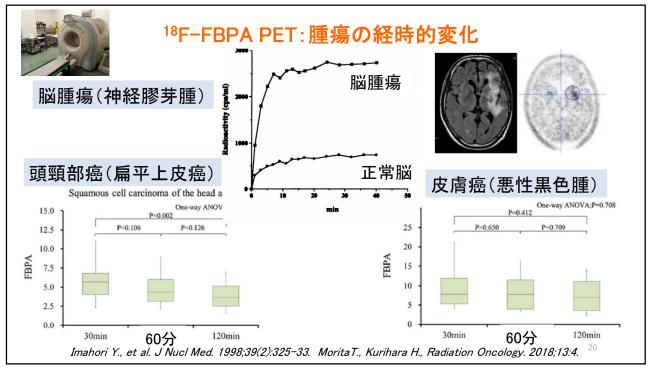
体内に摂取した物質(分子)が体内でどう動いているか、その流れを 映像化して把握し、そこから診断に役立つ情報を得る技術

「核医学治療(RI内用療法)」(治療の技術)


RI(放射性同位元素 Radio Isotope)、または RI と薬剤を組み合わせた 放射性医薬品を体内に投与して行う放射線治療

15


15


本日の内容

- 1. 核医学PET(陽電子放出断層撮影)検査
- 2. ホウ素中性子捕捉療法(Boron Neutron Capture Therapy; BNCT)
- 3. BNCTのための Four-borono-2-18F-fluoro-phenylalanine (18F-FBPA) PET検査

-	PET: 各臓器のホウ素(10B)濃度の推定		
	臓器	時間(分)	ホウ素(10B)濃度(ppm)
	脳	57	7.6 ± 1.5
	顎下腺	56	12.6 ± 2.4
1987	骨髄	50	9.4 ± 1.7
	耳下腺	56	10.3 ± 1.7
	甲状腺	56	9.0 ± 1.5
	肺	55	3.5 ± 1.2
45000	心臓	54	10.1 ± 2.4
6 7 >		54	14.4 ± 2.7
	肝臓	54	8.6 ± 1.7
	脾臓	53	15.2 ± 3.7
	膵臓	53	30.9 ± 7.4
	腸管	52	10.9 ± 2.1
	膀胱(尿)	51	383.6 ± 214.7

18F-FBPA PET: 役割と指標

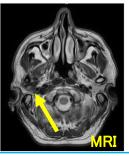
60分後の静止画像から、腫瘍へのホウ素(10B)の取り込み量を予測

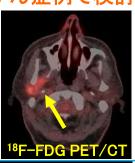
指標

腫瘍/正常比(T/N比) 腫瘍/血液比(T/B比)

BNCTの副作用予測や患者選択の情報を提供

表在性腫瘍を除き、効果的な腫瘍線量を担保するには、T/N比≧2.5やT/B比≧2.5の条件が必要

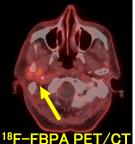

加速器BPC-BNCTに係るガイドブック 日本中性子捕捉療法学会/日本放射線腫瘍学会編 Suzuki M., et al. Radiother Oncol. 2009;92(1):89-95.

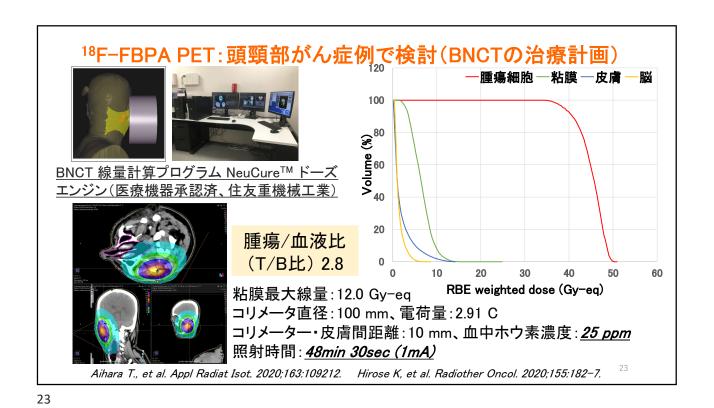

2

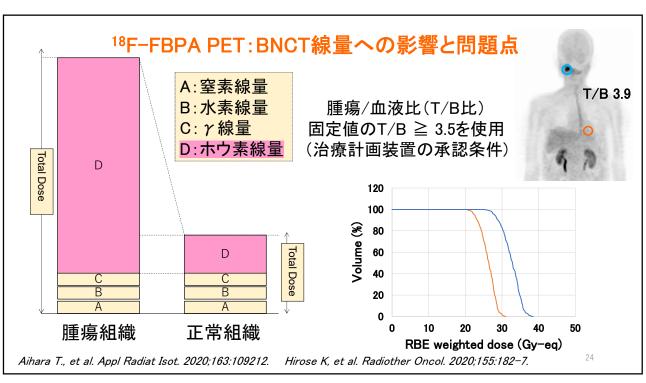
21

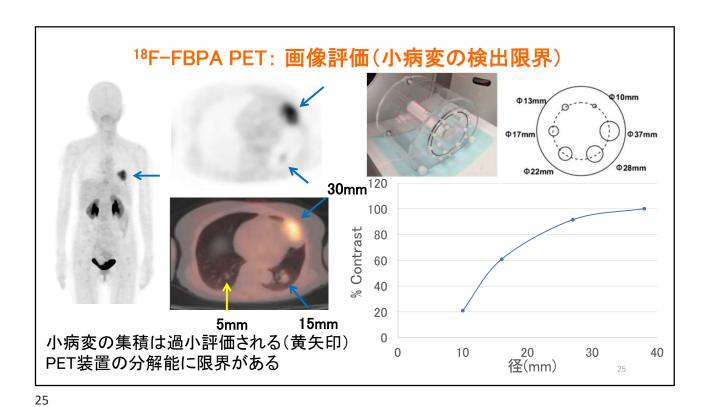
18F-FBPA PET: 頭頸部がん症例で検討

70代男性 右耳下腺癌 放射線化学療法後 局所再発

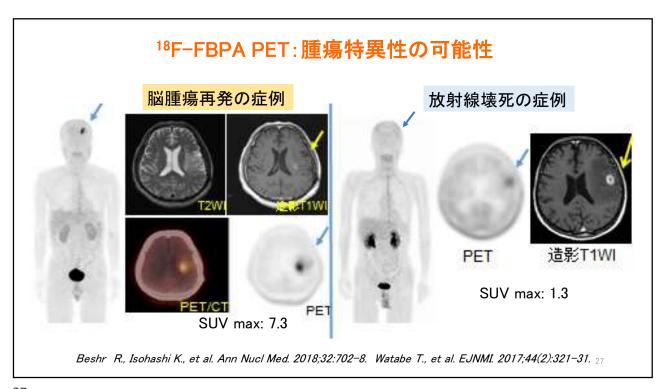


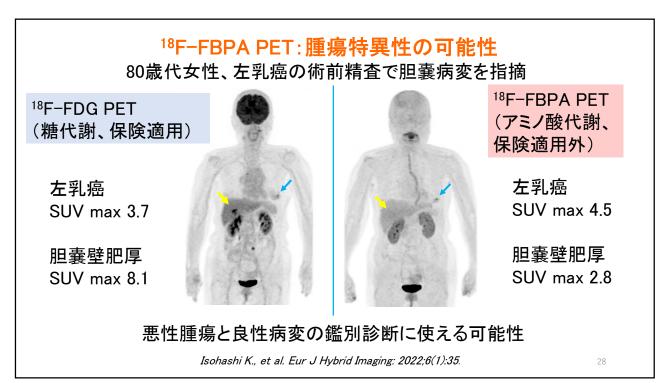



18F-FBPA PET (保険適用外)

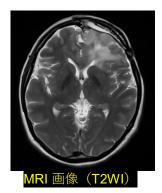


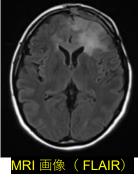
腫瘍/血液比 (T/B比) 2.8

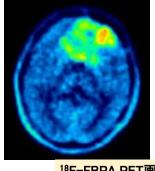


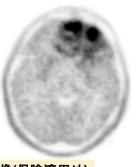


18F-FBPA PET: 異なる撮像時間の画像比較 右上顎洞癌治療後の局所再発症例 → 2分間撮像 10分間撮像 26








18F-FBPA PET: 腫瘍の広がり診断への応用

40歳代女性 脳腫瘍(grade III)にて手術、化学放射線治療後の再発症例

¹⁸F-FBPA PET画像(保険適用外)

正常脳組織への取り込みが低いため、腫瘍の広がり診断に役立つBNCTをはじめとする治療計画への応用

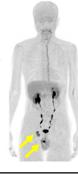
29

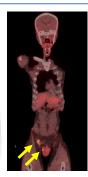
29

症例1

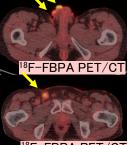
(乳癌)

September 1





^{18F-FBPA(保険適} 用外)の集積が強い 腫瘍を探索


(乳房外 Paget病)

18F-FBPA PET: 適応疾患拡大に向けて

BNCTの治療 %F-FBPA PET/CT 効果が期待で きるかも?

PET-CT検査:被験者の被ばく線量

1回検査の投与量あたりの実効線量(PET)

111MBq \rightarrow 2.1 mSv, 185MBq \rightarrow 3.5 mSv, 370MBq \rightarrow 7.0 mSv

CTの実効線量

- 1) 吸収補正を目的 120kV、10mAs → 1.1mSv
- 2) PET画像のfusionを目的 120kV、30~50mAs → 3.9~6.8mSv
- 3) CT画像診断用の撮影を目的 120kV、200mAs → 27mSv

18F-FBPA PET-CT検査(保険適用外)の被ばく線量は、保険診療で行われる 18F-FDG PET-CT検査の被ばく線量と同等からやや低い

臨時PET研修セミナーテキスト(平成17年1月8日),

がんのホウ素中性子捕捉療法(BNCT)のための院内製造された FBPA を用いたPET 検査を行うためのガイドライン(ver. 1.0) 日本核医学学会 Sakata M., et al. Ann Nucl Med. 2013;27(3):285-96. Kono Y, et al. Acta Radiol. 2017; 58:1094-100.

31

本日のまとめ

- 1. 画像診断検査では体内を観察することができ、治療方針決定等に役立つ。 核医学PET検査では、放射性医薬品を投与し、その体内分布を観察する。 投与する薬剤によって、異なる代謝や機能を観察することができる。
- 2. BNCTは放射線治療の一つで、切除不能な局所進行,または局所再発頭 頸部癌に対して保険が承認されている。
- 3. BNCTで用いる治療薬のBPAの取り込みは18F-FBPA PET検査(保険適用外)で観察することができる。BNCTの治療効果や副作用を予測することができる。
- 4. より精度の高いBNCTの提供や適応疾患拡大に向けての¹⁸F-FBPA PET (保険適用外)の役割が求められている。

ご清聴ありがとうございました。