連載講座

中性子イメージング技術の基礎と応用(応用編第9回)

中性子イメージングの生物学への応用†

川端祐司

京都大学原子炉実験所 590-0494 大阪府泉南郡熊取町朝代西 2-1010

Key Words : neutron, neutron imaging, neutron radiography, biological sample, thermal neutron, plant, wood, medical application

1. はじめに

中性子イメージングは、中性子を用いて非破壊的に試料の透過画像やCT画像を得るものであり、典型的な視野は数十cm程度、位置分解能は中性子用イメージングプレートを用いた場合で60 µm 程度である。この分解能は我々が日常の感覚で観察する領域よりやや小さいが、 ミクロと言うよりはマクロ領域を観察する手段である。

また,同様の非破壊測定としては X 線によ るレントゲン写真があるが,これと比較すると, 軽元素の水素等に対して大きなコントラストが 得られる。これは X 線が核外電子と相互作用 するため,原子番号が大きいほど散乱断面積が 大きくなり,その結果,軽元素が見えにくくな るのに対し,中性子は原子核と直接相互作用す るため,中性子に対して大きな断面積を有する 水素,リチウム,ホウ素等がよく見えるという 特長がある。 レントゲン写真には長い歴史があり,その有 用性がよく知られていることから,比較的強い 中性子ビームが得られるようになった初期の段 階から,X線とは異なる情報を得る手段として 中性子ラジオグラフィの生物研究への応用は考 えられていた。例えば,1965年に出版された 中性子ラジオグラフィの教科書¹¹で,既にバッ タやマウスの中性子透過写真が示されている。

例えば、水素を含む水は動植物にとって重要 な働きを担っており、自身が大量に水分を含ん でいるばかりでなく、その挙動が生命活動と密 接な関係を持っている重要な物質であることは 言うまでもない。植物体内の水分布や移動を観 察する手法としては、MRIを用いる方法や、 水分子の酸素を¹⁵O に置換し、その崩壊を測定 する方法²⁰等がある。これらの手法にはそれぞ れに長短があり、中性子ラジオグラフィは数十 cmの比較的広い視野全域に対して均一な分解 能を持つ画像が得られることが長所となってい る。

2. 花卉中の水分分布測定への応用

中性子イメージングの花卉研究への応用は, 日本が世界をリードしている分野である。世界 に先駆けて中性子 CT によるカーネーション切 り花中の水分測定の試みが行われ³,中性子イ メージングがこの分野の研究に有効であること

[†]Fundamentals and Applications of Neutron Imaging (Applications Part 9).

Application of Neutron Imaging to Biological Research.

Yuji KAWABATA: Research Reactor Institute, Kyoto University, 2-1010, Kumatori, Sennan-gun, Osaka 590-0494, Japan.

RADIOISOTOPES

図1 スプレーカーネーション切り花の萎凋前後における中性子 CT イメージ 左:萎凋前,右:萎凋後 子房壁の形状変化及び子房部分の水分量変化が観察できる

が示された。更に、図1に示すように、萎凋前 後における子房近辺の形状変化や水分量変化が 測定され^{4),5)}、切り花の生理活性研究への応用 へと発展している。

花卉分野の産業応用例としては,「真空予冷」 による切り花へのダメージ研究がある⁶。真空 予冷とは,切り花や生鮮野菜を長距離輸送する 際に,商品の鮮度を保つために冷却する方法の 一つである。商品を梱包したまま真空容器に入 れ,気圧を下げることによって自身が持つ水分 を気化させて,気化熱によって冷却する。この 方法は,それぞれが持つ水分によって冷却され るため,大量の商品が密に積まれていても全体 を均一に冷却できるという長所がある。しかし 一方,自らの水分を蒸発で失うことが商品のダ メージとなることから,冷却方法とダメージの 関係を明らかにすることが求められていた。

ここでは,沖縄から出荷される切り花の例と して,赤小菊(品種:みやび)が調べられてい

図2 真空予冷影響測定試料 赤小菊(品種:みやび)

る。測定では図2のように試料を保持し,真空 容器に入れ,真空冷却の前後に中性子イメージ を撮像した。花,茎,葉のそれぞれについての 変化に着目した結果,茎及び花部に関しては水 分の若干の減少は見られるもののダメージを受 けるというほどの影響はなかった。

葉部のイメージを図3に示すが,この場合に は明らかに真空予冷後には水分が大きく抜けて

図3 真空予冷前後の菊の葉の中性子イメージ 左:真空予冷前,右:真空予冷後

白くなった領域があることがわかる。これらは 真空冷却前にあった小さな傷口から水分が抜け てしまったもので,こうなると回復は不可能で ある。これらの測定の結果,真空予冷によって ダメージを受けるのは,前もって傷つけられた 部分であり,花や茎部は実質的にはほとんど問 題がないことが明らかになった。

また,傷ついた葉部における水分の移動が, 極冷中性子(Very Cold Neutron:VCN)を用 いた高コントラスト画像として測定され,主葉 脈が切断された時でも,迂回するように葉全体 に水分が運ばれていく様子が観察された⁷⁾。こ のような透過画像から得られる情報は,測定時 における水分量についてであり,その情報は重 要ではあるものの,水の移動に関しては量の変 化から考察するしかないという限界があった。

そのような問題を解決するために,植物内で の水分の移動を,水素と重水素の置換を利用し て,画像上のコントラスト変化から測定する試 みが進められている。これは軽水と重水の中性 子断面積が異なることを利用して画像の変化と して水分の移動を計測するものであり,この方 法でトマト苗茎内の蒸散流が測定された⁸⁰。こ の測定では,トマト種子(Var.Harzfeuer)を 砂培地に播種し,発芽後本葉が2葉から3葉展 開した苗を,石英ガラス管に充填したソーダガ ラス培地に移植し,新たな根及び地上部の発達 が確認されてから測定が行われた。軽水で育成 した後,模擬土壌内の軽水を重水に置換し,そ の後の変化を冷中性子イメージングによって測 定した結果,トマト苗に重水が時間と共に吸収 されていく様子が示されている。

重水と軽水の物性の違いが植物にどのような 影響を与えるかという点に注意を払う必要があ るが,試料全体をとらえつつ茎内部といった小 さな領域まで任意の断面で観察できる点が長所 である。現状では一つの CT 画像を取得するの に1時間程度は必要であるため,比較的ゆっく りとした現象にしか用いることができないが, 今後有望な手法であると期待されている。

3. 土壌中における根部研究への応用

中性子が高い物質透過能力を持つことを利用 し、土壌中の植物の根を生育している状態のま ま観察することが行われてきた。最も初期の研 究としては、土壌中のトウモロコシ種子の発芽 や根の育成状況を、種の植え付けから9日間に わたって測定し、土壌中の様子が生きた状態で 観察できることを実証したものがある⁹⁰。また トウモロコシの根からの水分吸収を調べるため、 根周辺の土壌中の水分変化を測定する試みも行 われた¹⁰⁰。

大豆については,根の周辺に水分を含んだ高 分子を置き,水分供給条件を変えた場合の根と 水分の関係を調べるところから始まり¹¹⁾,根周 辺の水分の変化¹²⁾,さらには環境汚染物質の一 つであるバナジウムが大豆の根に及ぼす影響が 調べられている¹³⁾。また豆類の根の成長と周辺

図4 朝鮮人参育成用ポット

の水分分布との関係及びアルミニウムが土壌中 に存在した場合の根の成長阻害の様子を中性子 CTによって3次元的に調べられるというよう に大きく発展している¹⁴⁾。

また,韓国では朝鮮人参の土壌中での生長を 継続して観察するという息の長い研究が進めら れている¹⁵⁾。朝鮮人参は韓国では大産業であり、 特に山間部での貴重な現金収入源となっている。 しかし、生長するまで5~6年も必要であり、 更にその生育した形状によって大きく商品価値 が変わる。したがって、その環境がどのように 生育と関係しているかが大きな関心事である。 しかし、朝鮮人参はデリケートであるため、い ったん土壌から掘り出すと再び植えても正常な 生長を期待することはできないため、 土壌中の 朝鮮人参を取り出すことなく、生長期間にわた って観察を続けることが必要となる。しかしこ れまでそのような様子を観察する手段がなかっ たため、いまだ十分な研究がされていないのが 現状である。そこで、図4に示すようなポット で朝鮮人参の育成を進めており、一定の期間ご

図5 土壌中朝鮮人参の中性子 CT 画像 ボリュームレンダリングによって土壌中の朝 鮮人参のみを浮き上がらせたもの。土壌上部 は水分が多く,朝鮮人参との区別ができなく て消しきれていない

とにその生長を中性子 CT で確認している。図 5 に土壌中の朝鮮人参形状を中性子 CT で測定 した結果の例を示した。

4. 樹木研究への応用

樹木に病変,傷等がある場合,その部分の密 度が変化することから,それらの様子を中性子 イメージングで観察することが可能であり,ス ギ苗木の材内病変部の観察が行われている¹⁶。 一般的にスギでは材内に病原菌が侵入すると材 変色部ができ,更にその周囲の乾燥帯(移行帯) では,通水が阻害されて含水率が低下する。こ こでは,暗色枝枯病菌に侵されたスギ苗木にお ける材内の病変部の進展過程を中性子イメージ ングで非破壊的に観察している。

図6に菌を接種したスギ苗木の様子,図7に その撮像の様子,図8に菌及び土の状態が異な った場合における病変部の範囲を測定した結果 を示す。このような測定は,水ストレスが病原

図6 スギ苗木へ暗色枝枯病菌を接種する様子

菌や病変部に及ぼす影響を調べるような研究に 適している。スギ材への菌感染初期段階でも材 変色部の色は薄く,肉眼ではほとんど識別でき ないが,その周辺には速やかに乾燥帯(移行帯) ができるため,中性子イメージングはそれらの 観察に適している。

樹木に対する研究ばかりでなく,切り出した 後の木材に対する応用も進められている。例え ば,切断加工された木材が水分を吸収した際の 木材内の水分挙動や木材そのものの変形を,ブ ナ,マツ,クリ,トウヒ等について測定し,木 材加工への中性子ラジオグラフィの応用が検討 された¹⁷⁾。

また,木質の考古資料の劣化や変形を防ぐた め,その保存処理として樹脂等を含浸させる手 法があるが,含浸させる材質は保護される試料 の材質及び状態によって異なるため,十分な保 存処理を行うためには含浸状態を確認する必要 がある。そのため,含浸させたアクリル樹脂の 木質試料中分布を観察し,適切な保存処理のた

図7 菌を接種したスギ苗木を中性子イメージング で撮像する様子

めの情報が得られている¹⁸⁾。

5. その他の植物利用への応用

表面から見えない植物内部の様子を観察する ものとしては、さやの中のアブラナの種が生長 する様子を7~27日間にわたって観察されて いる例がある¹¹⁾。また、最近、米国では病害毒 のトウモロコシへ及ぼす影響を調べる試みとし て、カビ毒の一種であるアフラトキシンがトウ モロコシの芯部分の形状に及ぼす影響の研究を 進めている¹⁹⁾。このように中性子 CT は、穀物 等の比較的小さな植物について、育成環境や毒 物等が各所の形状に及ぼす影響の研究に応用で

図8 スギ苗木病原部の中性子イメージ

暗色枝枯病菌接種後7日目の様子。土が乾燥している状態では,病原部が拡大している様子が明瞭に示され ている

左)弱病原種 土乾燥,中央)強病原種 土湿潤,右)強病原種 土乾燥

きるものと期待されている。

他には,植物内の元素移動を観察するものと して,発芽後早い時期の豆類の根から吸収され たガドリニウムの茎や葉へ移動する様子が約1 時間にわたって観察されている²⁰⁾。

植物に関連した他の研究としては、トウモロ コシの根に対する害虫(根切り虫: estern corn rootworm)の土中での挙動を観察したユニー クな研究例がある²¹⁾。

6. 医学利用等

X線の医学利用は古い歴史を持っていること から,強い中性子ビームが利用できるようにな るとその対比から利用の試みが始められるのは, ある意味,自然なことであった。1980年代当 初には,骨硬化症を発生させたラットの骨の観 察に利用されている²²⁾。また,体内の骨や木材 の内部といった「深い」位置の観察のために, より透過率の高い高速中性子を用いる試みも行 われた²³⁾。ついには,熱中性子を用いてマウス の肺癌を観察することに成功している²⁴⁾。中性 子が小動物の観察に利用できることが実証でき たのは画期的なことであるが,X線利用との比 較検証が今後の課題であろう。また最近では, ウサギの肝臓癌への応用の試みがなされてい る²⁵⁾。その結果を図9に示すが,がん部位が中 性子イメージングで識別されている。

中性子ラジオグラフィではないが、中性子を 用いたイメージングの医学利用として、オート ラジオグラフィが高位置分解能ホウ素定量とし て用いられてきている。これは、研究用原子炉 から発生する中性子を用いて研究が進められて いる中性子補足療法(Boron Neutron Capture Therapy: BNCT)のために、薬剤によってが ん細胞に蓄積されたホウ素の定量を行うもので あり、トラックエッチ法²⁶⁾⁻²⁹⁾や、イメージング プレートを用いた方法^{30),31)}によるホウ素分布測 定が精力的に行われてきている。

また,他の医学利用としては,生成時の病態 生理的条件を知るために胆石の内部構造を調べ た試みがある³²⁾。これらの医学利用の詳細に関 しては,応用編第10回「中性子イメージング の医学への応用」も参照していただきたい。

なお,前述したように昆虫などの中性子イメ ージング画像はバッタの例¹⁾などいくつかの例 が掲載されている。しかし,それらの画像が,

冷中性子による撮像

熱中性子による撮像

X線による撮像

図 9 がん (VX-2) に罹患したウサギ肝臓の中性子 イメージ 中央左側にがん部位が確認することができる

昆虫の研究にいかなる意義と学術価値があるか は不明であり,現在のところこのようなことが

可能であるという程度の報告にとどまっている。

7. まとめ

水素に対して感度の高い中性子は,水素が重 要な働きをする生体内を観測する重要な手段と なりうる。実際に中性子散乱分野では生体高分 子に対して非常に多くの研究がなされており, 原子・分子レベルの研究に強力なツールとなっ ている。それに対して,中性子イメージングは, 数十 μm から数 cm 程度のスケールを見るツー ルであり,おのずと利用目的が異なってくる。 しかし,生物を更に理解するためにはこれらを 相補的な研究手段として捉え,両方を用いて総 合的な理解を進める研究が必要となってくるで あろう。

中性子イメージングを実施できる研究施設が 少ないこと、マシンタイムが混み合っているこ と、また生体試料を準備できる設備が中性子施 設側に無いことなど、さまざまな制約はあるも のの、その利用分野は着実に拡大している。現 在建設中の Japan Proton Accelerator Research Complex (J-PARC) が完成したおりには、パ ルス中性子を用いた中性子イメージングの新し い利用が期待できる。

また,中性子フェーズコントラスト法等の新 しい手法が開発されつつあり,さらなる画質向 上とこれらを用いることによる,ミクロとマク ロを繋ぐ中間領域での研究が視野に入ることも 期待されている。これらの新手法については, 本連載講座でも基礎編第11回及び第12回にお いて詳述される。

なお,中性子イメージングの生命科学への応 用についての詳しい解説記事が本誌に掲載され たので,そちらも参照されたい³³⁾。

文 献

- 1) Berger, H., Neutron Radiography, Elsevier Publ. Co., Amsterdam (1965)
- Tanoi, K., Hojo, J., Nishioka, M., Nakanishi, T. M. and Suzuki, K., J. Radioanal. Nucl. Chem., 263 (2), 547-552 (2005)

- Nakanishi, T. M., Furukawa, J. and Matsubayashi, M., Nucl. Instrum. Methods Phys. Res., A424, 136-141 (1999)
- Matsushima, U., Lehmann, E. H., Vontobel, P., Frei, G., Nishizawa, T. and Kawamitu, Y., PSI Sicientific Report 2004, Volume III, p.198 (2004)
- Matsushima, U., Kawabata, Y., Sim, C. M. and Nam, K. Y., Proc. VIIIth IS Postharvest Phys. Ornamentals, Acta Hort. 669, ISHS (2005)
- Matsushima, U., Kawabata, Y. and Horie, T., J. Radioanal. Nucl. Chem., 264 (2), 325-328 (2005)
- Matsushima, U., Kawabata, Y., Hino, M., Geltenbort, P. and Nicolaï, B. M., *Nucl. Instrum. Methods Phys. Res.*, A542, 76-80 (2005)
- Matsushima, U., Kardjilov, N., Herppich, W. and Hilger, A., BENSC Exp. Rep., 2005B, Hahn-Meitner-Institute, p.96 (2006)
- Struss, R. G., Proc. of 1st World Conf. on Neutron Radiography, San Diego, USA, 581-590 (1981)
- Aderhold, H. C., Bouldin, D. R., Riha, S. J. and Cahn, M., Proc. of 3rd World Conf. on Neutron Radiography, Osaka, Japan, 731-737 (1989)
- Nakanishi, T. M., Matsumoto, S. and Kobayashi, H., Proc. of 4th World Conf. on Neutron Radiography, San Francisco, USA, 57-64 (1992)
- Nakanishi, T. M., Tsuruno, A. and Matsubayashi, M., Proc. of 5th World Conf. on Neutron Radiography, Berlin, Germany, 716-719 (1996)
- Furukawa, J., Nakanishi, T. M. and Matsubayashi, M., Nucl. Instrum. Methods Phys. Res., A424, 116-121 (1999)
- 14) Nakanishi, T.M., Okuni, Y. and Hayashi, Y., Nishiyama, H., J. Radioanal. Nucl. Chem., 264 (2), 313-317 (2005)
- 15) Kim, H. H., Seung, B. J., Park, J. Y., Sim, C. M., Kim, Y. J. and Lee, S. W., Proc. of Int. Symp. on Research Reactor and Neutron Science, Daejon, Korea, 472-474 (2005)
- 16) Yamada, Y., Aoki, Y., Yamato, M., Komatsu, M., Kusumoto, D., Suzuki, K. and Nakanishi, T. M., J. Radioanal. Nucl. Chem., 264 (2), 329-332 (2005)
- Lehmann, E., Vontobel, P., Usbeck, T. and Niemz, P., Proc. of 8th World Conf. on Neutron Radiography, Rome, Italy, 621-630 (2002)
- 18) Lehmann, H., Hartmann, S. and Wyer, P., Nucl. In-

strum. Methods Phys. Res., A542, 87-94 (2005)

- 19) Cleveleand IV, T. E., Hussey, D. S., Chen, Z., Jacobson, D. L., Brown, R., Carter-Wientjes, C., Cleveland, T. E. and Arif, M., Book of Abstract, 8th World Conf. on Neutron Radiography, Gaithersburg, USA, T444 (2006)
- Körösi, F., Balaskó, M. and Sváb, E., Proc. of 6th World Conf. on Neutron Radiography, Osaka, Japan, 457-464 (1999)
- 21) Graf, B., Renard, G., Le Gall, J. and Laporte, A., Proc. of 1st World Conf. on Neutron Radiography, San Diego, USA, 543-553 (1981)
- 22) Allee, L. L., Davis, P. M. and Aderhold, H. C., Proc. of 5th World Conf. on Neutron Radiography, Berlin, Germany, 728-733 (1996)
- 23) Dühmke, E. and Greim, L., Proc. of 1st World Conf. on Neutron Radiography, San Diego, USA, 573-580 (1981)
- Matsumoto, G. and Kato, K., Proc. of 5th World Conf. on Neutron Radiography, Berlin, Germany, 702-708 (1996)
- Tsuchiya, Y., Matsubayashi, M., Takeda, T., Lwin, T. T., Wu, J., Yoneyama, A., Matsumura, A., Hori, T. and Itai, Y., *Jpn. J. Appl. Phys.*, 42, 7151-7153 (2003)
- 26) Larsson, B., Sornsuntisook, O., Eriksson, G., Johansson, E., Sköeld, K., Nilsson, B. and Fantini, M., Proc. of 2nd World Conf. on Neutron Radiography, Paris, France, 497-511 (1986)
- Yanagie, H., Ogura, K., Matsumoto, T., Eriguchi, M. and Kobayashi, H., *Nucl. Instrum. Methods Phys. Res.*, A424, 122-128 (1999)
- 28) Ogura, K., Yanagie, H., Eriguchi, M., Lehmann, H., Kühne, G., Bayon, G. and Kobayashi, H., Proc. of 4th World Conf. on Neutron Radiography, State Collage, USA, 585-590 (2001)
- 29) Yanagie, H., Ogura, K., Takagi, K., Maruyama, K., Matsumoto, T., Sakurai, Y., Skvarc, J., Illic, R., Kuhne, G., Hisa, T., Yoshizaki, I., Kono, K., Furuya, Y., Sigiyama, H., Kobayashi, H., Ono, K., Nakagawa, K. and Eriguchi, M., Proc. of 2nd World Conf. on Neutron Radiography, Paris, France, 639-646 (1986)
- Yanagie, H., Fjii, Y., Eriguchi, M., Matsumoto, T., Iwai, S., Ogura, K., Kobayashi, T., Ono, K. and

Kobayashi, H., Proc. of 5th World Conf. on Neutron Radiography, Berlin, Germany, 750-757 (1996)

31) Rant, J., Gabel, D., Bayon, G., Yanagie, Y., Kobayashi, H. and Lehmenn, E., Proc. of 6th World Conf. on Neutron Radiography, Osaka, Japan, 303-309 (1999)

- 32) Tanaka, M., Nagai, T., Tasaki, T., Miki, M., Hirakawa, K., Watanabe, T. and Kobayashi, H., Proc. of 3rd World Conf. on Neutron Radiography, Osaka, Japan, 715-722 (1989)
- 33) 松嶋卯月, RADIOISOTOPES, 56(9), 553-565(2007)