連載講座

中性子イメージング技術の基礎と応用(応用編第3回)

中性子イメージングの航空・宇宙、自動車、防衛産業への応用[†]

池田 泰

財団法人ファインセラミックスセンター材料技術研究所 456-8587 愛知県名古屋市熱田区六野 2-4-1

Key Words : neutron, neutron imaging, car, aircraft, gunpowder, space rocket

1. はじめに

中性子イメージングは、中性子線を用いて物 体内部の情報を得る技術で、非破壊検査に応用 できる。中性子線は、物体を透過する際に吸収 ・散乱を受け、物体の構造・組成分布に応じた 透過画像を提供する。X線は同様な透過画像を 提供するが、物体の核外電子による吸収・散乱 であるため、原子番号に依存した単調な変化を 示す。中性子線は、元素の核との相互作用であ るため、核特有の透過像を示す。中性子線では、 H, B, Li などの軽元素の減弱係数が, Fe, Cu, Pb などの重金属の減弱係数と比較し大きく, X線とは逆である。また、Cd、Gd、Sm など、 特定の元素・原子核に大きな減弱係数を見るこ とができることが特徴である¹⁾。このため、中 性子イメージングは,重金属容器中の水,有機 物など含水素物質の検出・画像化に有効で、X 線像にはない中性子独特の画像を与え、X線・ γ線検査を補完する技術と考えられる。従来, 放射線透過像による検査・試験を Radiography

[†]Fundamentals and Applications of Neutron Imaging (Applications Part 3). Testing (RT) と呼んできた。本稿では簡略の ために,中性子線透過像(中性子イメージング 像)を Neutron Radiography Testing (NRT) 像と書き,それに対して X 線透過像を X-ray Radiography Testing (XRT) 像と書く。

表1に,現在,日本で中性子イメージング検 査の実施可能な設備を挙げた。詳細は基礎編第 5回(2007年8月号)を参照して頂きたい。

表2に国内外で実施されている中性子イメー ジングの産業応用例を挙げた。産業応用の有力 な対象として、本稿では航空・宇宙、自動車な どの輸送機器分野から応用例をピックアップし た。航空機の腐食やタービンブレード、宇宙ロ ケットの火工品、自動車の安全起爆装置であり、 中には既に実用化されているケースもあるよう である。また、防衛火器の弾薬などが考えられ る。これらは自動車を除くと、やや民間需要と はかけ離れた分野であるため、日本においては 現状でそれほど大きな需要にはなっていない。 また、防衛上、企業上の秘密事項になっている 場合がほとんどで、公表された例は少ない。し かし、日本の安全・防衛を考えるとき、国策と しても維持しておきたい重要な技術である。

2. 航空機用ガスタービンブレードの撮影例²⁾

航空機用のガスタービンは Ni, Cr を主とす る超耐熱合金から鋳造法で造られ,使用時の表 面温度が1200 ℃ 以上にも達するために,内部

Application of Neutron Imaging in Aircraft, Space Rocket, Car and Gunpowder Industries.

Yasushi IKEDA: Japan Fine Ceramics Center, 2-4-2, Mutsuno, Atsuta-ku, Nagoya-shi, Aichi Pref. 456-8587, Japan.

施設名	中性子源	中性子束強度 n·cm ⁻² ·s ⁻¹	コリメ ー タ比 L/D
(独)日本原子力 研究開発機構	研究用原子炉JRR3-M	1 × 10 ⁸	100
京都大学 原子炉実験所	研究用原子炉KUR	1×10^{6}	100
近畿大学 原子力研究所	研究用原子炉UTR-KINKI	1×10^{4}	20
住重試験検査(株)	小型サイクロトロン	5×10^{5}	44

表1 現在,国内で利用可能な中性子イメージング施設

表2 中性子イメージングの産業応用例

適用分野	品名	検査対象
宇宙機器・ロ	起爆管、導爆線、分離ボル	金属中の火薬
ケット	ト・ナット	
航空機	翼、ヘリコプターブレード	ハニカム材
		アルミニウム合金の腐食
	航空機エンジン用タービン	中子残り
	ブレード	
	航空機エンジン用燃料噴射	燃料の流動、コークス
	ポンプ・ノズル	金属中のプラスチック
自動車	エアバック用火工品	金属中の火薬
	プラスチック射出成形機	溶融プラスチックの挙動
	エアコン・ヒートパイプ	金属内の流体の挙動
その他	液体金属•2相流	流体の挙動
	古文化財•美術品	内部構造、下絵、材質

にガス冷却用の複雑な流路が造られている。鋳 造時の中子には、シリカアルミナセラミックス 系材料が使用されており、その除去が十分でな いと、ガスの流れを塞ぐことになり、ブレード の致命的な損傷につながる。重金属中のシリカ 系物質であるため、従来のX線撮影では検出 が困難な場合がある。全体を観察するためには, X線の撮影エネルギーを2~3度変化させて撮 影し、残留物を調べることになるが、必ずしも それで十分という保証はない。図1(a) に,管 電圧 230 kV で撮影したブレードの X 線透過写 真(ネガ像)を示した。ガス流路中に残留物は 見られない。管電圧を下げて撮影すると、吸収 係数の小さい物質も可視化できるが、吸収係数 の大きい金属の枠があるので、可視化が困難で あった。図1(b) に中性子透過写真を示した。 この写真は、小型サイクロトロンのコリメータ 比 (L/D, L:コリメータの長さ, D:コリメ

ータの入り口直径)=50の設備で撮影したもの である³⁾。原子炉の中性子イメージング設備な ど, L/D 比のもっと高い設備で撮られた写真 と比較すると、コントラストのシャープさがや や欠けているが、1枚の画像で全体領域が画像 化され,X線では写らなかった右端の薄い部分 も良く画像化されている。右端上部に白い部分 が見られ、これの見られないブレードも沢山あ ることから,残留物ないしは構造上の何か特異 物があるのかもしれない。図1(c),図1(d)は、上とは異なったブレードの中性子透過像で ある⁴⁾。冷却型 CCD カメラで, 10⁷ 台の中性子 束で,40秒と10秒で撮影された。CCDカメ ラでありながら、中性子束が大きく、また、L/ D比が大きいため,画像が非常にきれいで, シャープである。これらの試験用炉では商業用 検査撮影を実施している。

図 2(a),図 2(b)は別のタイプのブレード

(b) NRT像:撮影/小型サイクロトロン

(a) XRT像:管電圧230kV

(c) NRT像:試験用炉(*L/D*:100)、CCD画像⁴⁾
(d) NRT像:試験用炉(*L/D*:800)、CCD画像⁴⁾
図1 航空機エンジン用タービンブレードの放射線透過像³⁾

の XRT 像と NRT 像である⁵⁾。NRT 像は造影 剤を用いない通常の NRT 像である。白い部分 が空洞で,黒い部分が超合金の構造である。こ の画像は XRT 像とよく似ているが,ブレード 下部の軸取付け箇所にある空洞は,XRT 像で は見ることができなかった。この分野の検査は, 外国では,カナダの Chalk River 原子力研究所, 米国カリフォルニア州の Aero Test Operation. Inc.で,実用規模で実施されている。主として ブレード製品として出荷する前に実施される。

航空機エンジンのノズル部に,使用によりコ ークスが付着する様子を検査した事例がある⁶⁾。 その様子をリアルタイム中性子イメージングで 撮影した結果を図3に示した。差分処理が成さ れている。

3. 航空機機体ハニカム構造の腐食検査

参考文献⁷によれば,航空機の胴体はストリ ンガー(縦通材),フレーム(円框,えんきょう) の骨組みと,スキン(外板)がリベットで結合 された構造である。翼はスパー(桁),ストリ ンガーが翼根から翼端へ,リブ(小骨)が翼前 縁から後縁へ通っていて,これらとスキンがリ ベット結合されている。尾翼や,昇降舵,方向 舵など比較的小さな翼には,ハニカム構造(図 4)が用いられる。ハニカムは蜂の巣状の金属 製薄板構造(ハニカムコア)の両面に外板が接 着されている。ハニカムには,アルミニウム等 金属,ノメックス等非金属が用いられる。外板 はアルミニウムや複合材が用いられる。検査は 結合部やハニカムコアと外板の層間剥離,異物

(a) XRT像(管電圧:120kV)
(b) NRT像(KUR:1×10⁶n·cm⁻²·s⁻¹)
図 2 航空機エンジンタービンブレード⁵⁾

図3 ガスタービンノズルのコーキングの様子⁶⁾ (黒い部分にカーボンが付着している)

図4 航空機のハニカム構造

の含有, 外板の衝撃損傷, 繊維破断などである⁷⁾。 機体の保守検査では目視検査の他に, 渦流探傷 (Eddy current Testing: ET) や超音波探傷 (Ultrasonic Testing: UT) が 90% を占めるが, 骨 組みの内部構造やハニカムコアへの水の浸入等 の検査には放射線透過検査 (Radiography Testing: RT) が用いられる。外部から直接接触す ることのできない部材の形状変化や,き裂の検 出には放射線画像が最適であり,特に,コアへ の水の浸入はコアの腐食・凍結による破壊につ ながり,その検出は重要で,放射線画像が用い られている⁸⁰。

図5に軍用機の翼の腐食を検査する各種の中 性子イメージング設備⁹⁾⁻¹²⁾を示した。大きく分 けて中性子源として、²⁵²CfのRI線源を利用す るシステムと、D-T反応を利用する密閉型小 型加速器システムがある。中性子束はどちらも $10^4 \sim 10^5 n \cdot cm^{-2} \cdot s^{-1}$ である。ポリエチレン等 の減速材を設けて、L/D比が $20 \sim 30$ のコリ メータを取付け、アームに載せた可搬型で、い ろいろな角度から機体を撮影できる。図6、図 7 に、これらの装置で得られたハニカム構造、 アルミニウム合金機体のいろいろな腐食状況の 中性子イメージング像を示した¹³⁾⁻¹⁷⁾。これら は X線ではほとんど撮影できない。

欧米では、ヘリコプターのローターブレード の中性子イメージング検査も盛んになりつつあ る。ハンガリーでは、古くなった軍用のヘリコ プター15台について、長さが10mの翼ロー ターの全体検査を行っている^{16),17)}。ドライの状 態と水にぬらしたウエットの状態とを撮影し、 その差を検出して水の浸入具合を検査している。

(a) ²⁵²Cf線源によるシステム(1)⁹⁾

(c) 密閉型中性子発生器によるシステム(1)¹¹⁾ 図5 航空機の腐食検査用中性子イメージング装置のいろいろ

(b) ²⁵²Cf線源によるシステム(2)¹⁰⁾

(d) 密閉型中性子発生器によるシステム(2)¹²⁾

防音・遮熱カバー無し 防音・遮熱カバー有り

- (a) 航空機アルミニウム合金のNRT像¹¹⁾ (矢印:腐食箇所)

(b) 航空機ハニカム構造の放射線像比較¹²⁾ (矢印:腐食箇所)

図6 航空機ハニカム構造のNRT 像

(b) ハニカム構造修復後のNRT/XRT検査比較画像¹⁶⁾ (a:金属介在物、b:接着剤過剰、c:修復領域、d:膠付け領域)

図7 ヘリコプターローターブレードの放射線透過像 (画像提供:ハンガリー M.Balasko 氏の好意による)

(a) NRT像: 撮影 KUR

(c) 延時起爆管の検査説明図

(b) XRT像:管電圧 200kV

図8 延時起爆管の放射線透過像¹⁸⁾

図 9 導爆管の NRT 像¹⁹⁾

4. 宇宙用機器の NRT 像検査の実例

宇宙用機器には H-2A に代表される宇宙ロ ケットがある。機体の構造は航空機と異なり, エンジンや燃料タンク等には,耐熱材料の溶接 構造が多く用いられている。段間部の接合では, Carbon Fiber Reinforced Plastic (CFRP)によ る一体成型が開発され,コスト削減を図ってい る。コスト削減と品質確保の両面に対応するた め,自動超音波探傷が実施されているが,将来 的には X 線 CT が期待されている。XRT 像で は,マイクロフォーカス X 線を用いた微細欠 陥の徹底的排除が重要になっている。

こうした中で、中性子イメージングは、機体 の段間や機体と固体ロケットブースターとの結 合を切断する起爆管や導爆線、分離ボルトなど、 火工品と呼ばれる部品の検査に用いられている。 火工品は、鋼鉄など金属製の容器の中に、アジ 化鉛、シクロナイト、ペンタエリトリトールな どの火薬が充填されている。これらの火薬の熱 中性子に対する減弱係数が容器金属よりも大き く、ケーシング内の火薬の状態を透視すること ができる。

図8に延時起爆管を示した¹⁸⁾。延時起爆管は 導爆線により作動し,内部で延時線火薬を燃焼 させたのち,再度導爆線を作動させるタイマー 機能を持った火工品で,中性子イメージングに よる検査箇所が図に示されている。中性子検査 では火薬とボディ間の隙間,火薬内部の異物, クラックの有無,接着剤の充填状況を検査する。 図8(a) にダミーの延時起爆管のNRT 像,図 8(b) に XRT 像の透過像を示した。どちらも 上部の管には火薬は装填されていない。下部の 管には装填されている。XRT 像では火薬の状

(a) NRT像(撮影:KUR)
(b) XRT像(管電圧:200kV)
図 10 隔壁型起爆管 2 種類の NRT 像・XRT 像²⁰⁾

(a)NRT像

(b) XRT像(c) 外観図

図 11 宇宙ロケット用分離ナットの放射線透過像21)

態はほとんど見ることができない。

図9に密封型導爆線の構造と放射線画像を示 した¹⁹⁾。導爆線は爆ごう信号を約7000 m·s⁻¹ で伝達する。中性子検査では、火薬の有無、火 薬とボディ間の隙間、火薬内部の異物、クラッ クの有無、接着剤の充填状況を検査する。NRT 像により接着剤の不足が検出でき、XRT 像で はシースの凹み、変形を検出する。

図 10 に, 隔壁型起爆管の NRT 像と XRT 像

の結果を示した²⁰⁾。隔壁型起爆管は導爆線の信 号を受けて、出力薬を燃焼させ、ロケットモー ターの添加に使用する。本写真はダミーとして 作製された模擬品である。NRT 像では、ドナ ーチャージ、アクセプタチャージの異物、クラ ック、添装薬の異物クラック、火薬とボディの 隙間を検査する。図の上段は火薬が装填された 状態、下段は装填されていない状態である。中 性子イメージングでは、火薬の存在が非常に良

(a) XRT像: 90kV

(b) NRT像: 撮影 KUR 冷中性子(白色部:造影剤の水によるす)

図12 自動車キャブレターの放射線透過像23)

外観写真

中性子透過像

図 13 自動二輪車のエンジンの外観と NRT 像²⁴⁾

(a) NRT像(撮影:立教大学原子力研究所)
(b) XRT像(撮影:立教大学原子力研究所)
図 14 自動二輪車エンジンの NRT・XRT 像²⁵⁾

く画像化されている。XRT 像では,ほとんど 火薬は検出できなかった。

図 11 に、セパレーションナットと呼ばれる 部品の NRT 像と XRT 像の結果を示した²¹⁾。 セパレーションナットは衛星やフェアリングの 分離に使用される火工品で、爆発の圧力で、ナ ットが開き、ボルトが飛び出して分離する構造 になっている。NRT 像では、内部の様子が可 視化でき、構成部品の組み立て状態を検査する。 200 kV の XRT 像では、厚い鋼鉄の部分に阻 まれ、内部が可視化できなかった。H-2A では、 更に大型のセパレーションボルトが使用されて おり、これについては高速中性子による NRT 像も研究されている²²⁾。

5. 自動車用部品の撮影例

自動車部品の検査としては、アルミニウム合 金の鋳造品やキャブレターなどの複雑構造品が 対象となっている。鋳造品は製造過程で,すが 入りやすいが、アルミニウム合金のため、従来 のX線では母材とすとの間にコントラストが つき難く、検出が困難であった。中性子の場合 もそのままでは検出が困難であったが、真空容 器内で水を注入することにより、高コントラス トの検査画像が得られることがわかった。図 12に一例として、電子式噴射装置の冷中性子 による NRT 像と XRT 像を示した。XRT 像で はほとんど識別できない多数のすが、NRT 像 では良く識別されている。冷中性子を用いるこ とにより、すの状態を明瞭に識別することがで きた²³⁾。

図 13 に,小型二輪車用のキャブレターの外 観と NRT 像を示した²⁴⁾。また,図 14 には NRT 像と XRT 像の比較を示した²⁵⁾。XRT 像では鋳 造部の金属が邪魔になり,内部の構造は見るこ とができない。一方,NRT 像では配管や内部 のプラスチック有機材部分が明瞭に可視化され ている。

中性子イメージングの産業応用として,今後 期待されているのが,自動車等のエンジンやコ

図 15 BMW エンジンの 1 000 rpm 回転の中性子 線動画像:撮影 200 µs/フレーム²⁶⁾ 画像提供: B. Schilinger 氏の好意による

ンプレッサー, エアコンなどのオイル, 流体の リアルタイムな可視化である。このテーマはす でに十数年前にイギリスで、ロールスロイスの エンジンが撮影されて以来、研究者の間で進め られてきた。エンジンの動きが毎分1000回転 と速いため、高速の撮影システムが必要で、そ のため、10⁸ n·cm⁻²·s⁻¹ 以上の中性子(熱,よ り好ましくは冷中性子) 束が必要である。最近 では、ドイツ、フランスの研究者がグルノーブ ルのILL (Institut Laue-Langevin) 研究所 NEUTRAGRAPH 設備 $(3 \times 10^9 \,\mathrm{n \cdot cm^{-2} \cdot s^{-1}})$ を使って、BMW 自動車エンジンピストン・シ リンダー内の冷却オイル噴流を撮影している²⁶⁾。 1フレームあたり, 200 us の撮影時間で, 150 の連続画像が撮影された。図15に1フレーム の画像を示した。オイルジェットが良く観察で きる。

6. 花火・弾薬等の撮影例

図16に、図16(a) 花火²⁷⁾,図16(b) 火薬を 使用した拳銃・ライフル銃の弾丸の中性子画像 を示した²⁸⁾。花火の画像では、薄いスチール缶 に、使用前と使用後の花火を入れて撮影した。 花火は火薬以外は紙製である。使用前の火薬の 状態がよくわかり、花火打ち上げの安全性の確 保に、こうした中性子イメージングが役立つ可

(a) 花火:撮影 NRT住友小型サイクロトロン

(b) 弾薬:撮影 NRT、立教大学原子力研究所

⁽c) 弾薬: 撮影 XRT

立教大学原子力研究所

能性がある。拳銃・ライフル銃の弾丸の画像で は,顆粒状をしている火薬の状態が,弾丸を立 てた状態,横にした状態で,非常に良く可視化 されている。XRT 像ではこのような火薬の状 態は検出が困難であった。不発を防ぐためには 火薬の入り具合の検査が必要なのではなかろう か。実はアジアの近隣諸国でも,NRT 像によ る実弾の検査を行っており,備えあれば憂いな しで,我が国でもそろそろ考えてもいいのでは ないかと思われる。

おわりに

本解説では多くの写真を日本非破壊検査協会 出版の「中性子ラジオグラフィ写真集」から引 用した。また,航空機・宇宙ロケットに関する 記事では「非破壊検査の最前線」の解説に負う ところが大である。これらの文献がなければこ の解説を書くことはできなかった。 NRT が XRT に比較し,設備,コストが高価になることに加えて,中性子独特の放射化の問題があり,産業応用としてはどうしても市場が狭くなるのはやむを得ないが,航空・宇宙,防衛,原子力分野は民間の意欲に加えて,国策としても重要ではないであろうか。NRT 技術の維持,発展を図って頂きたいものである。

文 献

- Annual Book of ASTM Standards, E 748, 325 (1993)
- 日本非破壊検査協会編,中性子ラジオグラフィ 写真集, p.36(1995)
- 日本非破壊検査協会編,中性子ラジオグラフィ 写真集, p.41(1995)
- Muhlbauer, M.T. et al., 8th World Conference on Neutron Radiography, presentation, contact by Kobayashi, H. (2006)
- 5) Muhlbauer, M.T. et al., 8th World Conference on

Neutron Radiography, presentation, contact by Kobayashi, H. p.36-37 (2006)

- Lindsay, J. T. et al., Neutron Radiography (3), Kluwer Academic Publ., p.621 (1989)
- 7)日本非破壊検査協会編,非破壊検査の最前線, CD,4巻2-1(2000)
- 8) 日本非破壊検査協会編,非破壊検査の最前線, CD,3巻2-56(2000)
- 9) Barton, J. P. et al., Neutron Radiography (4), Gordon and Breach Sci. Publ., p. 134 (1992)
- 10) Froome, D. A. et al., Neutron Radiography (3), Kluwer Academic Publ., p.741 (1989)
- 11) Cluzeau, S. et al., Neutron Radiography (4), Gordon and Breach Sci. Publ., p.453 (1992)
- 12) Dance, W. E. et al., Neutron Radiography (3), Kluwer Academic Publ., p.761 (1989)
- 13) Froome, D. A. et al., Neutron Radiography (3), Kluwer Academic Publ., p.741 (1989)
- 14) Dance, W. E. et al., Neutron Radiography (4), Gordon & Breach Publ., p.143 (1992)
- Cluzeau, S. et al., Neutron Radiography (4), Gordon and Breach Sci. Publ., p.453 (1992)
- Balasko, M. et al., Neutron Radiography (7), ENEA, p.613, 637 (2002)

- Balasko, M. et al., Nucl. Instr. Method in Physics Res., A542, 45 (2005)
- 18) 日本非破壊検査協会編,中性子ラジオグラフィ 写真集,pp.16-17(1995)
- 19)日本非破壊検査協会編,中性子ラジオグラフィ 写真集,pp.18-19(1995)
- 日本非破壊検査協会編,中性子ラジオグラフィ 写真集,pp.22-23(1995)
- 21)日本非破壊検査協会編,中性子ラジオグラフィ 写真集, p.24(1995)
- 22) Ikeda, Y. et al., Neutron Radiography (3), Kluwer Academic Publ., p.637 (1989)
- 日本非破壊検査協会編,中性子ラジオグラフィ 写真集,pp.62-65(1995)
- 24) Vontobel, P. et al., *Nucl. Instr.Method in Phys. Res.* Sec. A542, 148 (2005)
- 25) Kobayashi, H. et al., Neutron Radiography (4), Gordon and Breach Sci. Publ., p.771 (1992)
- Schilinger, B. et al., Nucl. Instr. Method in Physics Res., A542, 142 (2005)
- 27) 上本龍二(住重試験検査),私信による(2006)
- 28) 日本非破壊検査協会編,中性子ラジオグラフィ 写真集,pp.34-35(1995)