連載講座

中性子イメージング技術の基礎と応用(基礎編第7回)

中性子イメージング画像取得法

小林久夫

立教大学名誉教授 238-0023 神奈川県横須賀市森崎 4-9-27(自宅)

Key Words : neutron, neutron imaging, neutron radiography, gadolinium converter, fluorescent material, X-ray film, neutron imaging plate, electronic imaging, proportional counter, image intensifier, solid state imaging, property of imaging system

1. はじめに

試料を透過した中性子線を検出し画像化する 方式を中心に議論する。従来より用いられてい る様々な撮像方式について,電子式の撮像法を 含み,最近の新しい研究動向についても触れる。 次いで,画像取得に関わる特性について議論す る。

2. 画像信号取得方式

中性子の存在を確認するには,核反応に伴う 2次放射線あるいは反跳粒子に変換し,この粒 子線をコンバータにより信号化するか,中性子 線に有感な計数管などで計測する。この変換に 関わる物質を,中性子イメージングの分野では コンバータという。このコンバータはX線フ イルムと組み合わせたり,通常の撮像管と組み 合わせて画像化する。計数管方式はBF3計数 管をスキャンさせたり,これを多数組み合わせ たりして用いている。また,多線式比例計数装 置のように自身中性子の検出位置を決定できる

[†]Fundamentals and Applications of Neutron Imaging (Fundamentals Part 7). ものもある。現在はコンバータ方式が主流であ るが、むろん計数管方式も用いられている。

2・1 中性子検出の概要

2.1.1 中性子検出用物質

核反応に基づいて発生する 2 次放射線は, 即 時あるいは短半減期で生成するものを用いるの が普通である。一方,一度放射化した物質を中 性子場から取り出して β 線を検出する場合も ある。後者の場合,取扱い上,半減期は数十分 の核種を用いる。

前者は直接撮像法,後者は間接法あるいは放 射化による転写法と呼ばれている。直接法,間 接法とも安定な固体で比較的入手しやすく,か つ反応断面積が大きい物質がコンバータとして 用いられる。代表的コンバータを表1(a)及び 表1(b)に関与する様々な因子と共にまとめて 示した。コンバータの感度を上げるために,濃 縮した⁶Liや¹⁰Bを用いることもある。

反跳粒子を用いる例は高エネルギー中性子線 の検出,画像化の場合である。中性子線は MeV 程度のエネルギーを有するようになると,利用 できる核反応物質は少なく,あっても核反応断 面積が小さいために,コンバータとして実用し 難い。計数管方式で用いられる程度である。こ のエネルギー領域では,主に反跳陽子が用いら れ,これを何らかの方法で画像化する。したが

Image Acquisition Techniques on Neutron Imaging. Hisao KOBAYASHI: Professor Emeritus at Rikkyo University, 4-9-27, Morisaki, Yokosuka-shi, Kanagawa Pref. 238-0023, Japan (Residence).

物質	存在比 (%)	核反応	断面積 (barn)	半減期	 利用す 種類	る放射線 MeV
Li	7.42	${}^{6}\text{Li}(n,\alpha){}^{3}\text{H}$	953	安定	α ³ Τ	2.05 2.74
В	19.58	$^{10}\mathrm{B}(\mathrm{n},\alpha)^{7}\mathrm{Li}$	3837	安定	α ⁷ Li	0.84 2.74
Rh	100	103 Rh(n, γ) 104 Rh 103 Rh(n, n) 103m Rh	144	43s 57m	β X	2.44 0.02
Ag	51.35	103 Rh(n, γ) 104m Rh 107 Ag(n, γ) 108 Ag	11 35	4.41m 2.42m	β β	0.5 1.64
C	48.65	109 Ag(n, γ) 110 Ag	110	24.4s	x β	0.43 2.87
		109 Ag(n, γ) 110m Ag	3	254d	β	1.5(0.6%) 0. 53(31%)
Cd	12.26	113 Cd(n, γ) 114 Cd	20000	安定	γ	9
Sm	13.9	149 Sm(n, γ) 150 Sm	41500	安定	γ	
	26.6	152 Sm(n, γ) 153 Sm	210	46.7h	β	0.8
Gd	14.7	155 Gd(n,e ⁻) 156 Gd	58000	安定	e	0.14
	15.7	157 Gd(n,e ⁻) ¹⁵⁸ Gd	240000	安定	e	0.13

表1(a) 直接法に可能なコンバータ

表1(b) 間接(転写)法に可能なコンバータ

物質	存在比	核反応	断面積	半減期	利用す	る放射線
	(%)		(barn)		種類	エネルギー
In	95.7	115 In(n, γ) 116 In	45	14s	β	1.0
		115 In(n, γ) 116m In	154	54m	β	0.42
Dy	28.1	164 Dy(n, γ) 165 Dy	800	2.3h	β	1.29
						0. 095
		164 Dy(n, γ) 165m Dy	2000	1.26m	β	1.04
						1.108
Au	100	197 Au(n, γ) 198 Au	98.8	2.69d	β	0.962
						0.412

Lederrer, C. M., Hollander, J. M. and Perlman, I, Table of Isotopes 6th ed. (John Wiley & Sons, New York, 1967)

って,ポリエチレンなどの H 含有量が大きく 安定な固体がコンバータとして用いられる。更 に複雑な方式は,折に触れ論ずる。

2・1・2 画像化方式の概要

- 図1に,代表的な幾つかの画像方式を模式化 した。画像化の方式には,
- (1) フィルム法のように2次粒子線を直接エマルジョンに潜像を与えて撮像する(図1(a)及び図1(b))
- (2) 2次粒子線を蛍光物質中で発光させ、これをフィルム(図1(c))あるいは撮像系を用いて撮像する(図1(d))

図1 様々な中性子ラジオグラフィ撮像方式

- (3) 比較的安定な励起状態を作りこれを後刻 発光させるいわゆる輝尽発光体を用いる (図1(e))
- (4) 飛跡を化学的に処理して画像に結びつける,いわゆる固体飛跡検出器を用いる
 (図1(b)で固体飛跡検出器に置き換え)
- (5) 撮像管自身,あるいは計数管自身を中性 子線に感度を持たせて直接画像化する (図1(g))

等がある。

中性子イメージングの分野で,現在でも最も 多用されているのが,(1)である。(2)の前半は フィルム法の一部と解釈しても良い。撮像管を 用いる方式は,もっぱら(2)の方式であり,(1) と共に中性子イメージング法のもう一つの柱と なっている。(3)は1983年頃に開発されている が,中性子イメージングに用いられたのは1990 年であり,現在ではかなり広汎に用いられてい る。いずれ将来フィルム法に取って代わるので はないかと考えられる。(4)は高速中性子イメ ージングには無くてならない方式の一つである が,もちろん熱中性子の分野でも用いられてい る。

直接法,間接法共(図1(f))に(1),(2),(3) の画像化方式が用いられる。(4)は現像を化学 処理に変えた直接法の一つといえる。

2·2 中性子検出方式

(a) 金属 Gd (内部転換電子線:図1(a)):初 期には Gd 箔も用いられたが,現在では Al 板 上に真空蒸着した金属 Gd が,最も汎用されて いる。このコンバータは通常工業用 X 線フィ ルムを真空カセッテ内で密着して使用する。現 在,非破壊検査の方式としては,もっぱらこの 方法が用いられており,X 線ラジオグラフィと 共通の方法であるため,信頼性の確立した方式 となっている。Gd は熱中性子に対して最も高 い吸収断面積を有しており(表1(a)参照),25 μ mの厚さで,中性子線の大部分は吸収され主 として ¹⁵⁵Gd (n, γ)¹⁵⁶Gd 及び ¹⁵⁷Gd (n, γ)¹⁵⁸Gd 反 応が起こる。それゆえ,この領域での感度のエ ネルギー依存は無視できる。中性子を吸収する と,捕獲 γ 線は高い確率(~90%)で内部転 換電子に変換し X 線フィルムを感光する。¹⁵⁶Gd の主な内部転換電子のエネルギーは 39,81 と 88 keV,及び ¹⁵⁸Gd は 29,71,78,131 と 173 keV である。上のシステムを用いる場合空間分解能 はほぼ 20 μ m と実測されている¹⁾。これは,全 ての内部転換電子を用い,25 μ m の Gd コン バータと X 線フィルムの組み合わせを用いた シミュレーション計算の例で^{*1},確認されている²⁰。

X線フィルムには、内部転換電子が一方向か ら入射するので、解像度を損なわないため、ま た不要なフォグの増加を避けるために、片面乳 剤が多用される。中性子を光子に変換する画像 化法の場合には、解像度がGd コンバータと比 較し若干劣化すること、光感度を向上させるこ ともあって両面乳剤も使用される。

(b) 重粒子線とX線フィルム(図1(b)):コ ンバータとして天然や濃縮された LiやB(表 1(a))を用い、より飛程の短い α 線を検出し て、分解能の向上を試みた例もある。この方式 は、中性子あたりのエネルギーが大きいから感 度が上がるはず、しかもエマルジョン中の飛程 が短いから分解能が上がるはずという予断を生 み出している。しかし, α線の飛程に沿った エネルギー付与率 (LET) が大きいため, 顕 微鏡的にはこれの画像に与える濃淡の差が大き く、それが画像の荒れを強調してしまう。空間 分解能が高くても、階調分解能が悪いため、濃 度差の検出能力を向上するためには平滑化が必 要となり、結局は分解能が劣化してしまう。又 は、画像の荒れが埋まる多量の中性子線量を与 えると、今度は解析可能な階調濃度の上限を超 えてしまうこともある。結局. 微弱な中性子線

^{*&}lt;sup>1</sup>コンバータ厚,コンバータ―フィルム間の空隙, エマルジョン厚,エマルジョンの保護膜厚を全て 考慮している。

量の計測を目指すこのコンバータの目的とは逆 なことになってしまう。後に述べる輝尽発光体 や電子式撮像にもいえることであるが,この種 のコンバータは,X線フィルムと組み合わせる 場合,必ずしも良質の画像は与えない。

(c)粒子線と蛍光体(図1(c)):重イオンや α 線を用いる方式は、これを発光媒質に導入 し光に変換する型のコンバータとして用いる場 合は、明るいコンバータとして良好な結果を与 える。理由は、発光をフィルムや撮像管で画像 に結びつける場合、 α 線により蛍光を発した 光の媒体内での散乱や屈折によるにじみなどの ため、空間分解能は100 μ m~200 μ m¹⁾に劣化 するから、直接X線フィルムに感光させる場 合のような荒れはこの過程で平滑化されてしま うからである。この形のコンバータとしては、 ⁶LiF あるいは¹⁰B₄C と蛍光材 ZnS(Ag)との混合 物が最も多用されている。

X 線用の増感紙 Gd₂O₂S(Tb)もこの種のコン バータとして利用されている。これは蛍光体自 身の Gd が内部転換電子を出し,分解能は 200 μ m と測定されている¹⁾。

(d) 自身が蛍光体 (図 1(c)):この型のコン バータに焦熱型窒化硼素 (PBN: pyrolytic boron nitride) がある³⁾。これは BN をグラファイ ト上に気相成長させた薄板状の結晶体である。 結晶構造はグラファイト型, B中の ¹⁰Bとの ¹⁰B(n, α)⁷Li反応で発生した α 線が自身の結晶 内で発光する。X線フィルムとの組み合わせの 場合,最良の分解能は発光型にもかかわらず, 例えば 0.02 mm 厚のもので 22 μ m を得てい る^{1).3)}。可能性を持ったコンバータであるが, 残念ながら,これを用いた報告は PBN の製造 供給するシステムが無いためもあって,上記の 報告ただ一つだけである。

最近, Czirr らによって Li₆Gd (BO₃)₃(Ce) シ ンチレータが開発された⁴⁾。結晶構造中に Li, Gd, B が入っており, PBN より効率の良い中 性子用シンチレータである。彼らは⁶LiF+ZnS (Ag)をはじめとして他の様々なシンチレータ と特性比較を行っている。

(e) 複合蛍光体 (図1(d)):最近,開発され た特殊なコンバータとして,発光波長の異なる 二種類の蛍光物質 Gd₂O₂S(Eu)と Gd₂O₂S(Tb) を2層構造とした2色発光型コンバータがあ る⁵⁾。これは,両蛍光体の発光スペクトルの相 違と中性子線とX線,γ線の透過特性の相違 を組み合わせた中性子画像から,X線,γ線成 分の同時除去を狙ったものである。

(f) 固体検出器(図1(e)又は(f)):重イオン 宇宙線の検出に用いる固体飛跡検出器(プラス チック検出器(板):CR39) やニトロセルローズ フィルム)を用いる画像化方式も中性子ラジオ グラフィの初期段階から使われている。この方 式は,

(i)熱中性子領域では ¹⁰B(n, α)⁷Li や ⁶Li(n, α)³T 反応で生じた α, ⁷Li, ³T 線など,

(ii)高速中性子領域では反跳水素原子,

により画像が形成される。(i)は¹⁰B や⁷Li を含 むコンバータと組み合わせて熱中性子イメージ ングに、あるいは被写体中の¹⁰B の分布を画像 化することに利用され、(ii)は素材自身が持っ ている H により、それ自身がコンバータとな っている。この方式は、使用済み核燃料要素の 検査にしばしば利用された。

(g)輝尽発光体(図1(e)):最近,輝尽発光 体を用いたX線フィルムに代わる画像取得法 が開発され,これにGd₂O₂S(Tb)を混入させ, 中性子ラジオグラフィにも利用できる中性子イ メージングプレート(NIP)が開発された⁶。

この NIP の特徴はフィルム法と比較し,中 性子線量に比例する 5~6 桁の広いダイナミッ クレンジを有し,読み出し方法にもよるが分解 能は 59 µm と測定されている^{1).7)}。この NIP の 特徴は,画像を直接計算機に取り込めることで, 直ちに様々な画像処理ができることにある。こ れらの優れた特徴ゆえ,現在基礎的な研究分野 では,フィルム法に取って代わりつつある。し かし,この NIP は静止画しか取得できない。 また,Baも Br も比較的長い半減期で放射化 されてしまうことも問題である*2。短時間の照 射では殆ど問題にならないが,強照射の場合や, 長時間の繰り返し使用で,この放射化により使 用不能とはならないまでも,いつまでも残像が 残る。

X線フィルムには、公害物質の排出など問題 も多く、工業利用には未だになくてはならない 画像化法ではあるものの、NIP 読み出し装置の 普及が進み、工業規格などで認知されるように なれば、NIP が非破壊検査の分野でも次第に利 用されるようになると考えられる。

研究的にではあるが、他の輝尽発光物質 α -Al₂O₃(C)を使用する方法も報告されている⁸⁰。 この素材は最近、フィルムバッジに代わる個人 線量計としてかなり広汎に普及している。これ に、Gd₂O₃を混入して中性子線用に転用したも のであり、中性子線線量計としても実用されて いる⁹⁰。この輝尽発光体は、励起光波長と輝尽 発光波長が殆ど同じところにあるため、上記 NIP と比較して読み出しに工夫がなされている。 なお Al を主成分としているため、 α -Al₂O₃(C) は BaFBr(Eu)と比較して放射化の問題がほと んどないという利点はある。

2·3 電子式撮像 (図1(g))

初期における電子式撮像に関しては,1965 年に出版された Berger の教科書¹⁰に良くまと められている。この教科書には,現在実施され ている方式の原型が,提案の形も含めれば,ほ ぼ全て出そろっていると言ってもよい。ここで は1981年の第1回中性子ラジオグラフィ世界 会議以降,最近までの電子式撮像方式について, まとめておく。

(a)比例計数管方式:初期から盛んに用いら れた。BF3計数管から始まって,現在でも様々 な方式が報告されている。例えば,最近では2 次元位置検出能力を有する多線式比例計数管が 開発¹¹⁾されている。特殊な例としては,アルゴ ンヌ国立研究所のTREAT (Transient REActor Test) 施設には,360 個の多チャネルコリ メータが直接炉心全体を望めるような設計とし, これに高速中性子線検出用高圧メタン充填比例 計数管のアレイを組み合わせ,核燃料要素の動 態を直接観測するホドスコープ (hodoscope)*3 が設置されている¹²⁾。

(b)イメージインテンシファイア(I)を使用 する方式:後段に様々な撮像装置を接続し高感 度の撮像を得る方式として,現在でもしばしば 用いられている。Vert らは,Gd とシンチレー ション蛍光材をIIと組み合わせ中性子ビーム中 に直接挿入する撮像管を開発した¹³⁾。Lindsay ら¹⁴⁾や,超高速・高解像度の画像を取得した持 木ら¹⁵⁾,等による多数の報告がある。

(c)汎用撮像管を用いる方式:蛍光コンバー $タ^{6}LiF + ZnS(Ag) \ge SIT$ (silicon intensified target) 管を組み合わせた,実時間中性子撮像装 置¹⁶⁾,またイメージオルシコン¹⁷⁾ (image orthicon)^{*4}を用いた実時間撮像装置を開発してい る。その他,様々な撮像管を用いて実用されて いる。

(d)半導体素子を用いる方式:Steinbock は、512個、長さ25mmの1次元ダイオード アレイを用いて断層撮影を行っている¹⁸⁾。その 他、様々な通常の半導体アレイを用いた撮像方 式の報告がある。最近、開発された2次元の冷 却型 CCD (charge coupled device) カメラを 用いた撮像は Kobayashi らにより初めて利用 されて以降¹⁹⁾、国内外で盛んに用いられるよう になっている。例えば、Yoshii らのポリエチ レン樹脂中に ZnS(Ag)蛍光体を混入し、冷却 型 CCD と組み合わせた高速中性子ラジオグラ フィ装置²⁰⁾、等である。

蛍光コンバータにマイクロチャネルプレート と位置検出型 Si 検出器を組み合わせた画像化

^{*2}Ba (¹³⁸Ba:存在比 71.9%, T_{1/2}=82.7 m),

Br (⁸²Br:存在比 49.3%, T_{1/2}=35 h)

^{*3}荷電粒子の進路観測装置

^{*4}商品名。TV 撮像管の一種。1960 年代まで放送用 に広く使われた。

装置も開発されている²¹⁾。また,試作の段階で あるが,GdAsショットキー障壁型を5×5の アレイとした画像装置²²⁾も報告されている。

2・4 高性能化・複合化した画像取得

最近,電子式の撮像方式の進展や照射設備の 整備などに伴い,高度な撮像が試みられるよう になっている。これを画像取得の立場から二三 拾ってみたい。

高画質の例として, Mochiki ら²³⁾は電子雪崩 型アモルファス Se を用いた光伝導素子(HAR-PICON H4341)と⁶LiF: ZnS(Ag)を組み合わせ た高感度・高画質のカメラを完成させている。

やはり高解像度の撮像系としては、例えば、 アモルファス Si 平板型検出器(PaxScan 2520, 画素数1536×1920)をGd₂O₂S(Te)あるいは ⁶LiF+ZnS(Ag) 蛍光コンバータと組み合わせ たカメラが開発²⁰されている。

高速度撮像は,我が国で既に行われ幾つかの 論文が発表されている。国外においても例えば, Schillinger ら⁵⁵⁾は,強磁性液晶を用いた高速度 シャッタを冷却 CCD カメラに付けて,1000 rpm,4サイクルエンジンの実時間撮影を行っ た。彼らは,2回転を120フレームとして150 フレームの撮像を行っている。ただし,ガソリ ンを用いての実際の動画像ではない。

麻薬や爆発物の検出を目的とした撮像系の例 として、Rodes 6^{26} は APSTNG (Associated-Particle Sealed-Tube Neutron Generator) と名 付けられた中性子ビーム発生装置を開発した (図 2)。この装置は、 α 線の検出位置から 14 MeV 中性子線の飛翔方向を確定し、同時に飛 行時間から試験体内の部位までの距離を確定す る。そこで放出される捕獲 γ 線のエネルギー から N, C, O, Al などの核種を決定、その相 関から検出位置の物質を特定しよう (図 3) と いう方式である。この装置により爆発物は統計 誤差 5 σ で爆発物を、2 σ でコカインを 4 秒で 識別したという。

Ranza と Chen²⁷⁾は上と異なる装置で麻薬や

図2 米国 NDS (Nuclear Diagnostic System) 社製 APSTNG (Associated-particle sealed-tube neutron generator:囲み部分)を用いた麻薬, 爆発物等検査装置

 図3 APSTNGを用いた麻薬(コカイン),爆発物 (C-4)等検査結果,点線:2σ(麻薬と爆発 物),波線:5σ(爆発物)の決定統計範囲

爆発物の検出を目的とした基礎実験を行ってい る。高速中性子撮像のためのプラスチックシン チレータと CCD カメラを, D-D 加速器のター ゲットを中心にビームラインに対して異なった 角度に置き,各角度毎に異なったエネルギーで 放射される 2~6 MeV の高速中性子の角度マ ップをとることで,H,¹²C,¹⁴N,¹⁶O の存在比 を識別し,麻薬か,爆発物か,あるいは安全な ものかを識別しようというものである。

Dangendorf ら¹¹⁾はポリエチレンコンバータ と高速中性子用位置検出型多線式ガス検出器 (FANGAS: FAst Neutron GAS detector) を 組み合わせた装置及び高速プラスチックシンチ レータ (BC 400) と光学系にチャネルプレー トを組み合わせた高速中性子イメージング装置 (OTIFANTI: OpTIcal FAst NeuTron Imaging system)を開発した。彼らは、これを[®]Be(d, n) ¹⁰B 反応を利用した 13 MeV 高速中性子発生装 置と 3 ~ 3.5 m の TOF 施設に設置し研究を行 っている。

フェーズコントラスト法も注目すべき話題の 一つである。この方法は 1997 年に X 線シンク ロトロンを用いて見いだされた²⁸⁾が、中性子ビ ームに用いたのは Jacobson ら²⁹⁾である。その 後、欧州でも様々な報告がなされている。これ は、ピンホールから出た中性子線が薄い試験体 を透過する際に、端部やわずかな濃度差で起こ る干渉効果を利用する方法である。通常の透過 画像イメージングでは得難い、わずかな濃度差 をもつ傷や端部付近の試料を, 位相差を用いる ことによって画像化する一種の端部検出の方法 であり,透過の大小を画像化する方式とは基本 的に異なる。画像装置は特殊な物ではないが、 ピンホールと試料, 試料と撮像位置間の距離が, 各々ある程度必要なために,中性子線強度の高 い施設でないと画像化は難しい。またこの方式 は、 薄物の 試料や 透過性の 試料の 画像化に 有力 である。

もう一つ忘れてならないのは、Treimer ら³⁰⁾ の小角散乱の手法である。彼らは屈曲型二結晶 回折計を用いた超小角散乱断層撮影および回折 断層撮影を提案し、実施している。画像取得は 冷却型 CCD カメラを使用している。

紙数の関係でここで取り上げられなかった撮 像装置などについては文献を参照頂きたい。

3. 画像取得系の性能

撮像系の性能は,感度,直線性,ダイナミッ クレンジ,量子効率,階調分解能と雑音,空間 解像度で評価される。

3・1 装置の感度

撮像装置の感度は,中性子あたりの信号強度 で表される。フィルム法の場合は黒化度,アナ ログ式の撮像管は信号強度(出力電圧や電流) で表現される。計数方式やデジタル化された撮 像系では当然デジタル化された計数値というこ とになる。最近開発された NIP などは、中性 子量子を反映する信号取得がなされるようにな っている。

かつては,撮像装置の感度を上げさえすれば 画質の向上が図れると誤解されたこともあるが, 中性子量子が観測されるようになると,この感 度という考え方は少し考え直す必要が出てきて いる。どこまで画像を画像と識別できるかの問 題に関しては,2・2(b)で述べ,また3・5,3・6 でも取り上げているように,空間解像度との 相関で考える必要もあり,また後述のオフセッ ト信号とその雑音特性にも左右されることにな る。

3·2 直線性

最近の CCD カメラ等の画像装置は,最初か ら直線性があることを前提にして用いられるこ とが多い。しかし,汎用のテレビカメラの場合, 工業用 X 線フィルムの画像に合わせ,しばし ばその直線性はかなり自由に変えられるものも ある。Γ 値*5 として知られているが,出力の 画像を X 線フィルムの Γ 特性に合わせる必要 性もあって付加されている。

X線フィルムには入力がない場合フォグと呼 ばれるフィルムベースの光減衰に相当する濃度 が、逆に入力が過大の場合濃度が飽和してしま うため、上限と下限がある。この中間で濃度を 観測するわけであるが、工業用としては、入力 (X線線量)を対数、出力(黒化度)を直線で 表示する。すると計測領域のある範囲で直線(入 力に関して指数関数的)で表現される。全体の 姿はS字を横に引き延ばしたような形になる (図4(a))。従来の中性子イメージングでも一 時期この表現方式を踏襲していた。もちろん国 内外とも非破壊検査の分野では、現在でも踏襲 している。

^{*5}小文字で表すこともあり,入力に対する指数関数 的な出力の指数部分。Γ=1は入力に対して出力 が正比例。Γ=2は二乗で増加。

図4 フィルムの線量対黒化度曲線

 (a) 従来法
 (b) フォグを差し引く方法

しかし,中性子イメージングの場合,フォグ をバックグラウンドとして差し引いた黒化度で 表現すると,中性子量に対して指数的と言うよ りは,かなり広い範囲で直線的になることが知 られている(図4(b))。最近のように,定量性 を重んずる学術研究の領域等の場合,その後の 画像処理を考えると,黒化度に関しても直線的 なあるいは両対数的な表現を行った方が,画像 処理上良いのではないかと考えられ,従来方式 はもはや用いられなくなっている。

3・3 ダイナミックレンジ

信号処理可能な最低から最大の信号強度の幅 —X線フィルムの場合,フォグと識別可能な最 低線量から,黒化度が飽和するまでの範囲—は 大きく見積もってもせいぜい1:400程度(50 db)*⁶である。 輝尽発光体 NIP の場合,信号強度は16 ビッ トで表現されるので,単純に言えば1:2¹⁶(96 db)である。電子式撮像装置の場合,初期の ものは8 ビット(1:2⁸=48 db)でほぼX線 フィルムと同等であったが,最近はやはり12 ビットから16 ビットの間で処理される場合が 多い。

中性子イメージングの場合、特記しておく必 要があるのは、バックグラウンドの存在である。 第一に、中性子ビームでは散乱線によるバック グラウンドの存在を避け難い。通常の熱中性子 ビームでは、施設の遮蔽構造等にもよるが、ほ ぼ10~20%に及ぶ¹⁾。中性子導管を用いるビ ームでも 5~15% 程度は避けられない¹⁾。第二 に、撮像系は多かれ少なかれ y 線, X 線に感 度を有しているため、中性子ビームに付随する γ線, X線をバックグラウンドとしてとらえ てしまう。第三に,撮像系固有のオフセット信 号も場合によっては考慮する必要が出てくる。 これらのバックグラウンドは、これと何らかの 方法で差し引くことで直線性の下限は拡大する。 しかし,バックグラウンド自身統計的な性格を 有しているために、信号処理の下限は実は総合 的なバックグラウンドの統計特性によって決定 されてしまう。これが中性子イメージングにお いて無視できない限界を与えている。

撮像系はその利得を調整することによって, バックグラウンドを考慮した見かけ上のダイナ ミックレンジの上限を拡大できる。例えば NIP では,1:10⁴=80 db を達成できる。現在の NIP で言えば,実はこの値は読み出し系からくる上 限であり,NIP 自身の上限はもっと高いところ にある可能性がある。

3·4 量子効率

撮像系の性能を評価する指標として,中性子 の量子統計,コンバータ内の発生量子統計と撮

^{*6}ダイナミックレンジを論ずるとき,そのレンジを 通常はデシベル (db) で表現するが,単純な最低 最大の数値比で表すこともある。

像装置の雑音特性を含めた系の特性を評価する 量子効率*⁷[DQE](detective quantum efficiency)がある。装置にもよるが、NIPのよう に入力信号の雑音は中性子数nの雑音に比例 する場合があり、この時

 $[DQE] = [S/N]_{out}^2 / [S/N]_{in}^2$ = [NEQ]/n

で表される。この比は0から1までの間の値を とるため、しばしば%で表すこともある。この 量は、画像の荒れに関係しているが、この値が 大きいほど画質が良いとは限らない。例えば、 [DQE]が1であってもnが小さければ、画質 は√nで決まってしまう。また、3・5に述べる 階調分解能や3・6で述べる空間解像度とは直接 つながらない量であるが、測定系の特性として は重要な量である。もちろん測定系によるが、 通常、80~90%といわれている。ただし、現 在のところ NR の分野では、使われることは少 ない。

3.5 階調分解能と雑音特性

階調分解能はその信号値(黒化度)の決定精 度である。通常は撮像系の雑音特性で決まる。 信号強度の小さい領域では,撮像装置固有の雑 音特性に支配される。場合によってはオフセッ ト信号も影響を与える。

しかし,最近の測定系のように雑音特性が良 くなってくると,究極的には中性子数の量子統 計の方が直接きいてくるようになる。実際,NIP や一部の電子式撮像装置では,ある階調以下の 領域で,階調分解能は中性子量の統計に支配さ れる領域が現れることが観測されている³¹⁾。こ の領域では雑音は中性子量の平方根に比例し, この領域の相対的な階調分解能は線量と共に減 少する。通常,撮像系に信号強度に比例する雑 音があるため,ある信号強度以上でこの雑音が 量子統計を凌駕し,雑音は信号強度に正比例す るようになってしまう。そうなると,この領域 では,もはやそれ以上の相対的な階調分解能の 向上は望めなくなる。つまり,それ以上の画質 の向上が望めない。この辺の所は文献¹¹の議論 を参照して頂きたい。

3.6 空間解像度

撮像系固有の空間解像度は、初期の撮像装置 を除いては十分良くなっており、装置の総合空 間分解能としては、コンバータの持つ固有分解 能に支配されることが多い。幾つかの分解能は 2・2 で必要に応じて示した。

一般に解像度というと、この空間解像度を言 うことが多いのであるが、前節で述べた階調分 解能も直接に分解能に寄与している。しかし、 結局は究極的な総合解像度は、コンバータや撮 像系よりは中性子線量やビームの幾何学的特性 (*L*/*D*)によって決まってしまう場合が多い。

4. おわりに

表題に中性子画像取得法の概要とあるように, できるだけ広く中性子イメージングに用いられ ている画像取得法を論じた。だが,全ての手法 を網羅的に取り上げることはとてもできていな い。しかし,ほぼ大まかな画像取得の動向は得 られるはずである。詳細は,個々の文献をあた って頂くことをお願いする。また,最近の電子 式撮像に関しては,基礎編第9回を参照して頂 きたい。

文 献

- Kobayashi, H., Nondestr. Test. Eval., 16, 71-84 (2001)
- 2) Kobayashi, H., WCNR (3) 893-902
- 3) Kobayashi, H. et al., WCNR (4) 771-778

^{*7}これは雑音等価量子(NEQ: noise equivalent quanta=出力の[S/N] outの二乗)対入力信号(中 性子数)の対雑音比[S/N] in の二乗で表す。しか し、入力信号の統計を考慮せず、検出系の雑音性 能をより明確にする意味で、「検出量子効率」を DQE と言うこともある。この狭い意味の DQE に ついては、基礎編第9回で詳述する。

- Czirr, J. B. et al., Nucl. Instrum. Methods A424, 15-19 (1999)
- 5) Nittoh, K. et al., WCNR (6) 245-251
- 6) Okamoto, K. et al., WCNR (3) 461-468 (1990)
- Kobayashi, H. and Satoh, M., Nucl. Instrum. Methods, A424, 1-8 (1999)
- 8) Kobayashi, H. et al., WCNR (7), 195-204 (2002)
- Klemic, G. A. et al., *Radiat. Prot. Dosim.*, 65(1-4), 221-226(1996)
- Berger, H., Neutron Radiography : Methods, Capabilities and Applications, Elsevier, Amsterdam (1965)
- Dangendorf, V. et al., WCNR (7) 383-398; Nucl. Instrum. Methods, A542 197-205 (2005)
- 12) DeVolpi, A., WCNR (1) 661-669
- 13) Vert, M. et al., WCNR (1) 601-607
- 14) Lindsay, J. T. et al. WCNR (2) 579-586
- 15) 持木幸一,日塔光一,応用物理,75(11),1349-1353(2006)
- 16) Coking, S. J. Harris, D. H. C., WCNR (2) 527-535
- 17) Fujine, S. et al., WCNR (2) 537-546, 601-608
- 18) Steinbock, L., WCNR (3) 813-820
- 19) Kobayashi, H. et al. WCNR (3) 421-428
- 20) Yoshii, K. et al., WCNR (5) 258-265
- 21) Taniguchi, R. et al., WCNR (5) 307-312
- 22) Lindsay, J. T. et al., WCNR (5) 240-246
- 23) Mochiki, K. et al., WCNR (5) 249-257
- 24) Easterman, M. and Dubios, J., WCNR (7) 223-230
- Schillinger, B. et al., Nucl. Instrum. Methods, A542, 142-147 (2005)

- 26) Rhodes, E. A. et al., Mat. Res. Soc. Symp. Proc. Vol. 217, 189-203 (1991)
- 27) Lanza, R. C., and Chen, G., WCNR (7) 169-171
- 28) Bonse, U. et al., Proc. SPIE, 3149 108-119 (1997)
- Jacobson, D. L. et al., Proc. SPIE 3767, 328-335 (1999); Appl. Radiat Isot. 61, 547-550 (2004)
- Treimer, W. et al., Nuc. Instrum. Methods, A542, 367-375 (2005)
- 31) Kobayashi, H. and Satoh, M., Nucl. Instrum. Methods, A424, 1-8(1999)

[注記]

WCNR (1) : Neutron Radiography, eds. Barton, J. P. and Hardt, P. v. d., (D. Reidel, Dordrecht, 1985)

WCNR(2):同上(2), eds. Barton, J. P. et al., (D. Reidel, Dordrecht, 1987)

WCNR(3):同上(3), eds. Fujine, S. et al., (Kulwer, Dordrecht, 1990)

WCNR(4):同上(4), ed. Barton, J. P., (Gordon & Breach, Yverdon, 1994)

WCNR(5):同上(5), eds. Fischer, C. D. et al., (DGZfp., Berlin, 1997)

WCNR(6):同上(6), eds. Fujine, S. et al., (Gordon & Breach, Amsterdam, 2001)

WCNR(7):同上(7), eds. Chilco, P. and Rosa, R. et al., (ENEA, Rome, 2005)