機器中性子放射化分析法およびPIXE分析法による

亜鉛欠乏マウス肝細胞成分中の微量元素の定量(Ⅱ)

上島淳慈,皆吉龍二,川島美智子*1, 菅沼英夫*1

野口基子*²,二ツ川章二*³,世良耕一郎*⁴,矢永誠人*¹

静岡大学大学院理工学研究科 422-8529 静岡市駿河区大谷 836

*1静岡大学理学部放射化学研究施設 422-8529 静岡市駿河区大谷 836

*²静岡大学理学部生物地球環境科学科 422-8529 静岡市駿河区大谷 836

*³(社)日本アイソトープ協会アイソトープ部 113-8941 東京都文京区本駒込 2-28-45

*4岩手医科大学サイクロトロンセンター 020-0173 岩手郡滝沢村字留が森 348-58

1 はじめに

生体微量元素とは、生体内にごく僅かに存在する元素のことを意味し、これらの元素は体内ではそれ だけで機能することは少なく、主として酵素タンパク質や代謝機能の触媒として作用する。そのため、 生物が生命活動とその維持において必須性の高い元素(必須微量元素)が存在し、鉄、亜鉛、マンガン、 銅、セレンなどがこれに含まれる。この中で亜鉛は、ヒトの体内において鉄に次いで存在量の多い微量 元素であり、種々のタンパク質と結合した亜鉛酵素という形で、様々な生体内の反応に関わっている。 この亜鉛が欠乏すると、味覚・嗅覚障害、性機能障害、成長障害、脱毛、皮膚障害、免疫機能低下など の亜鉛欠乏症状が現れてくることが知られている。

これまで,我々は,亜鉛欠乏餌および対照餌を用いてマウスを飼育することにより,亜鉛欠乏マウス および対照マウスの臓器・組織中の微量元素の定量を行い,比較・検討してきた。その結果,成獣マウ スの亜鉛濃度に関しては,骨,すい臓,および精巣においては対照マウスに比べて有意な低下が認めら れたが,他の臓器・組織については両群の間に有意な差は認められなかった。その他の元素として,亜 鉛欠乏マウスの分析を行った全ての臓器および組織中のコバルト濃度が対照群のそれに比べて大きく上 昇していた。いくつかの臓器において, 亜鉛欠乏状態にあるにもかかわらず亜鉛濃度の有意な低下が見 られなかったことについては, 骨からの亜鉛の供給を考えている。しかしながら, 特に肝臓については, 多くの亜鉛結合タンパク質を含み様々な代謝に関与する臓器であり, コバルト濃度の変化以外の影響を 受けていないとは考えにくい。そこで本研究では, 亜鉛結合タンパク質からの亜鉛の遊離や, 他の金属 元素と置換, もしくはタンパク質そのものが消失など, 亜鉛の欠乏から起こるタンパク質構造の変化に ついて検討することとした。この目的のために, 遠心分離法により分離した肝細胞成分中における微量 元素濃度を機器中性子放射化分析により, また, 可溶性タンパク質中の微量元素濃度を PIXE 分析により 定量した。

2 実験

2.1 供試動物

日本クレア(株)より購入した ICR 系マウス(オス,7週齢)を通常餌(日本クレア実験動物用飼料,CE-2)による1週間の予備飼育を行い,その後2群に分け,同社より購入した亜鉛欠乏餌および超純水,ま たは対照餌および超純水を与え,それぞれ3週間の飼育を行った。なお,予備飼育を含めた飼育期間中 は,各ケージの中にステンレス製ネットを二重に敷き,いずれの場合も飼料および水以外の敷き藁ある いは排泄物等を摂取できない条件とした。

2.2 分析試料

上記の各マウスからエーテル麻酔下で肝臓を摘出した。摘出した肝臓は、その後の目的に応じて、次の2種類の操作を行った。

- 肝細胞の各細胞成分(各画分)中での微量元素濃度の分析を目的とした場合には、生重量を測定した後、HEPES buffer を加えてホモジナイズした。その後、条件を変えて5回の遠心分離を行い(50×g, 7 min, 1,000×g, 10 min, 9,000×g, 10 min, 30,000×g, 30 min, 105,000×g, 65 min),非破壊細胞画分、核画分、ミトコンドリア画分、リソソーム画分、ミクロソーム画分および可溶性画分に分離した。それぞれの画分を凍結乾燥後、秤量した。
- ② SDS-PAGE による可溶性タンパク質の分離,および PIXE 分析によるタンパク質中の微量元素濃度の分析を目的とする試料については, Tris-HCl Buffer を用いてホモジナイズした肝細胞から,1回の遠心操作(105,000×g,65 min)にて可溶性画分を分離した。

2.3 機器中性子放射化分析(INAA)

摘出した肝細胞の各画分,すなわち,非破壊細胞画分,核画分,ミトコンドリア画分,リソソーム画 分,ミクロソーム画分および可溶性画分について I N A A を行った。それぞれの画分について 10~150 mg を精秤した後,ポリエチレン袋に二重に封入したものを照射・分析用試料とした。標準試料には、NIST SRM 1577b Bovine Liver の一定量を同様に二重封入したものを用いた。熱中性子の照射は、日本原子力研 究開発機構 JRR-3 または京都大学原子炉実験所 KUR にて行った。短寿命核種による定量(Na, Mg, Cl, Mn, Cu, Br)では、JRR-3 放射化分析用照射設備 PN-3(熱中性子束 $1.5 \times 10^{13} \text{ cm}^2 \text{s}^{-1}$)あるいは KUR Pn-1 圧 気輸送管(熱中性子束 $1.9 \times 10^{13} \text{ cm}^2 \text{s}^{-1}$)にて 10~60 秒間の照射を行い、照射後直ちに、あるいは 1~3 時間 後に高純度 Ge 半導体検出器を用いて γ 線測定を行った。長寿命核種による定量(Fe, Co, Zn, Se, Rb) では、JRR-3 気送照射設備 PN-1(熱中性子束 $6.0 \times 10^{13} \text{ cm}^2 \text{s}^{-1}$)または KUR 黒鉛設備圧気輸送管 TC-Pn(熱中 性子束 $4.0 \times 10^{11} \text{ cm}^2 \text{s}^{-1}$)にて 20 分間または $50 \sim 74$ 時間の熱中性子の照射を行い、照射後、10~60 日間の 冷却の後、高純度 Ge 半導体検出器を用いて γ 線測定を行った。

2. 4 SDS-PAGEとPIXE分析

2. 4. 1 SDS-PAGE

亜鉛欠乏マウスおよび対照マウスの肝細胞から分離した可溶性画分に含まれるタンパク質濃度を定量 し、Tris-HCl bufferを用いてすべてのタンパク質濃度をそろえた。次に SDS-PAGE によってタンパク 質を分離し、CBB 染色または銀染色を行った。

2.4.2 PIXE分析

2.4.1 と同様に SDS-PAGE によってタンパク質を分離し,銀染色を行った。その後,44~66 kDa のそれ ぞれ 6 本のバンド位置においてゲルを切断し,十分に乾燥させた後,サンプルホルダー上のバッキング 膜(ポリプロピレンシート)に添付して PIXE 分析のターゲットとした。ここで,バッキング膜への試料 の貼り付けにはアルコールで希釈したコロジオン溶液(コロジオン:エタノール=1:5)を用いた。

3 結果および考察

3.1 INAAによるマウス肝細胞成分中の微量元素の定量結果

INAA により定量した亜鉛欠乏マウスおよび対照マウスのそれぞれの肝細胞成分中における微量元素の結果の一例として、可溶性画分についての分析結果を Fig. 1 に示した。Fig. 1 に見られるように 11 元素について定量を行うことができた。なお、本実験では、試料調製の際に用いる HEPES buffer の pH の調整に sat. KHCO₃を用いた。これは、常法に従って NaHCO₃用いた場合には、中性子照射によって大量の²⁴Na が生成し、その高エネルギーガンマ線によるコンプトン散乱の影響によって、他の元素の定量が妨害されることが予想されたため、これを避けたためである。したがって、本来であれば I N A A ではカリウムの定量が可能であるが、本研究の場合には上述の理由により定量することはできなかった。

Fig. 1 Concentrations of eleven elements (mean \pm SD) in cytosolic fraction of Zn-def. mice and control ones. Asterisks indicate significant difference (*P<0.01; t-test) from control.

亜鉛の肝細胞内での分布を Fig. 2 に示した。我々のこれまでのマクロ的分析では(肝臓を細胞分画せずにそのまま分析した場合には),亜鉛欠乏マウスにおける亜鉛濃度の有意な低下は認めることはできなかった。しかしながら、今回、肝細胞について遠心分離法による細胞分画を行って分析したところ、 Fig. 2 に見られるように、特に可溶性画分において亜鉛欠乏群での亜鉛濃度の有意な低下を認めることができた。また、F1の非破壊細胞を除けば、肝細胞1gあたりの含有量に換算した亜鉛濃度は、可溶性画分中で最も高く、次いで核画分中であった。細胞内に存在する亜鉛の多くは、タンパク質と結合して存 在し,遊離イオンとして存在する量は非常に少ない。可溶性画分には多くのタンパク質や酵素が含まれ ており,亜鉛はこれらと結合しているものと思われる。本研究においては,食餌中の亜鉛の欠乏によっ て血漿中亜鉛濃度が低下したとき,肝細胞中の亜鉛結合タンパク質から亜鉛が遊離してしまうのか,亜 鉛が他の金属と置換するのか,あるいは,タンパク質そのものが消失するのか,いずれにしろ,肝細胞 の可溶性画分中の亜鉛含有量は低下するのではないかと考えていたが,本実験結果はこれらのうちのい ずれかの可能性を示すものである。

Fig. 2 Concentrations of zinc (mean \pm SD) in cellular fragments and 5 subcellular fractions of Zn-def. mice and control ones; F1-cellular fragments, F2-nuclear, F3-mitochondrial, F4-lysosomal, F5-microsomal and F6-cytosolic fractions. Asterisks indicate significant difference (*P<0.05; **P<0.01; t-test) from control.

Fig.1に示した可溶性画分についての分析結果で, 亜鉛以外の元素で両群間に有意な差を認めること ができた元素はコバルトのみであった。これは他の画分においても同様の結果となった。このコバルト については、肝臓の全分析においても亜鉛欠乏群で有意な上昇が認められた元素であったが、細胞分画 を行って分析したところ、Fig.3に見られるように、全ての画分において、亜鉛欠乏群のコバルト濃度が 上昇していた。特に核画分および可溶性画分での濃度の上昇が著しいものであった。生体内におけるコ バルトの化学形としては,コバラミン等のビタミン B 群の形で存在するか,あるいは,コバルトイオン (無機体)として何らかのタンパク質と結合していることが考えられる。亜鉛欠乏群の全ての画分でコ バルト濃度が高まった原因については次のように考えている。実験室レベルにおいては、亜鉛タンパク 質中の亜鉛は容易に遊離し、また、コバルトなどの他の金属と置換する。さらに、いくつかの亜鉛酵素 に関しては、亜鉛がコバルトと置換した場合、酵素活性が保たれる、もしくは高くなることが知られて いる。このことから、食餌中の亜鉛が欠乏した場合には食餌からコバラミンが積極的に取り込まれたり 排泄が抑制されたりするというよりは、積極的に亜鉛を取り込むときにコバルトも取り込む、あるいは、 亜鉛タンパク質中の亜鉛とコバルトが置換する、ということが起こっていると考えられる。タンパク質 に結合している亜鉛とコバルトとの置換を考えたとき、肝細胞の可溶性画分以外ではいずれの画分にお いても亜鉛濃度に関しては両群の間に大きな差が認められなかったのは、コバルト濃度に比較して亜鉛 濃度は約 10²倍高いため,亜鉛とコバルトが置換することがあっても亜鉛濃度の低下については検知でき なかったためであろう。一方、コバルト濃度に関しては、もともとの存在量が低く、また、INAA におけ る検出感度も高いため,その濃度の上昇を容易にとらえることができたものと考えている。

Fig. 3 Concentrations of cobalt (mean \pm SD) in cellular fragments and 5 subcellular fractions of Zn-def. mice and control ones; F1-cellular fragments, F2-nuclear, F3-mitochondrial, F4-lysosomal, F5-microsomal and F6-cytosolic fractions. Asterisks indicate significant difference (*P<0.05; **P<0.01; t-test) from control.

3.2 SDS-PAGEによる可溶性タンパク質の分離結果

亜鉛欠乏マウスおよび対照マウスの肝細胞の可溶性タンパク質について SDS-PAGE を行い, 亜鉛 欠乏によるタンパク質の消失等の可能性について検討を行った。その結果, 分離したタンパク質の各 バンドの位置や数を比較した場合, CBB 染色および銀染色のどちらの染色法を採用した場合におい ても, 両群間に有意な差を認めることはできなかった。銀染色を行った結果の一例を Fig. 4 に示した。 この両群間に差を認めることができなかったことは, 亜鉛欠乏による亜鉛タンパク質 (アポタンパク 質)の消失や新たなタンパク質の誘導の可能性が低いことを示している。しかし, SDS-PAGE で分離 され, 確認される各バンドは, まだ多種類のタンパク質が混在したものであることから, 今回のよう に, 単に可溶性タンパク質全量について分離した結果からは, 上述の内容を断定することはできない ものと考えている。

Fig. 4 Typical SDS-PAGE pattern of proteins after silver staining for the cytosolic fraction; (M)-protein marker, (Z)-zinc deficient mice, (C)-control mice.

3.3 PIXE分析による可溶性タンパク質中の微量元素の定量結果

本実験では SDS-PAGE によって分離した可溶性タンパク質のうち,特に 44~66 kDa の 6 本のタ ンパク質バンド位置で切断したゲル(高分子量側からバンド 1, 2, ・・・6)について PIXE 分析を 行い,タンパク質中の微量元素濃度の分析を行った。その結果の一例として,各バンド中の亜鉛濃度 を Fig.5 に示した。この濃度は,銀染色を行った際にタンパク質と結合する銀イオンの量がそのタン パク質の量に比例する,すなわち各バンド中の銀濃度はタンパク質量を反映すると仮定し,亜鉛濃度 を銀濃度で規格化したものである。両群間の結果を比較したところ,バンド 2 において亜鉛欠乏群の 亜鉛濃度が上昇していた。これは,もともと存在していたアポタンパク質に亜鉛が結合したために, タンパク質の量は変わらず亜鉛の量だけが増加しという可能性が考えられる。一方,他の 5 つのバン ドでは両群間に有意な濃度差は認められなかった。これは,亜鉛欠乏によってもタンパク質に変化が 起こらない場合を除いて,亜鉛タンパク質の減少や消失,もしくは新たな亜鉛タンパク質の誘導の可 能性を示している。しかし,3.2 で述べたが,SDS-PAGE で分離したタンパク質の各バンドには多種 類のタンパク質が混在している。このことから,もし一部の亜鉛タンパク質から亜鉛が遊離していた としても,それを亜鉛の濃度変化として容易には捉えることができないことも考えられる。

Fig. 5 Zinc concentration standardized by silver concentration in each band of zinc deficient mice and control ones.

今後は、タンパク質の分離方法に改善を加える。例えば、二次元電気泳動によってタンパク質をそれ ぞれの種類ごと分離を行うとともに、タンパク質量の定量と PIXE 分析法を併用することにより、亜鉛欠 乏時におけるタンパク質構造の変化、亜鉛欠乏が生体に与える影響のメカニズムを追求していく予定で ある。

Determination of trace elements in hepatic cells of Zn-deficient mice

by instrumental neutron activation and PIXE analyses (II)

Junji Kamishima, Ryuji Minayoshi, Michiko Kawashima^{*1}, Hideo Suganuma^{*1}, Motoko Noguchi^{*2}, Shoji Futatsugawa^{*3}, Kouichiro Sera^{*4} and Makoto Yanaga^{*1}

> Graduate School of Science and Engineering, Shizuoka University 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

*1 Radiochemistry Research Laboratory, Faculty of Science, Shizuoka University 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

*2 Department of Biology and Geosciences, Faculty of Science, Shizuoka University 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

*3 Radioisotope section, Japan Radioisotope Association
 2-28-45 Honkomagome, Bunkyo, Tokyo 113-8941, Japan

*4 Cyclotron Research Center, Iwate Medical University 348-58 Tomegamori, Takizawa 020-0173, Japan

Abstract

The concentrations of trace elements in hepatic subcellulars and cytosolic protein of zinc deficient mice were determined in order to investigate the behavior and role of zinc and other trace elements.

Eight-week-old male mice of ICR strain were divided into two groups; one was fed with zinc deficient diet ($<1 \mu g/g Zn$), the other with control diet ($30 \mu g/g Zn$). After 3 weeks of treatment periods, their livers were removed. Two types of experiments were performed. In the first experiment, the liver samples homogenized with HEPES buffer which adjusted to pH 7.4 with KHCO₃ were centrifuged under differential conditions in order to separate into cellular fragments and 5 subcellular fractions, such as nuclear, mitochondrial, lysosomal, microsomal and cytosolic fractions. Each fraction was freeze-dried for instrumental neutron activation analysis (INAA). Concentrations of 11 elements, Na, Mg, Cl, Mn, Fe, Co, Cu, Zn, Se, Br, and Rb, were determined by INAA. In the second experiment, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and silver stain was performed for cytosolic fraction of other mice. After electrophoresis, the gel was cut into protein bands and subjected to PIXE analysis.

Almost all of the trace elements except for iron investigated in the present study mainly existed in cytosol which contains various proteins and enzymes. The zinc concentration in three fractions of zinc deficient mice was lower than that of control ones. Especially, in the cytosolic fraction, the difference of zinc concentration between both groups was remarkable. On the other hand, cobalt concentrations in all hepatic

subcellular fractions of zinc deficient mice increased significantly compared with control mice. These results suggested that metal proteins and other compounds, in which zinc was replaced by cobalt, might partially be synthesized in the liver of zinc deficient mice. It was also suggested that the other metal elements might slightly substitute for zinc in zinc binding proteins. Furthermore, concentrations of trace elements in each protein band were determined by PIXE analysis and zinc concentration in each band standardized with the silver concentration, i. e., normalized with the protein amount. From this result, there are no significant differences in almost all bands between zinc deficient mice and control ones. Therefore, it is considered that zinc binding proteins were decreased (or disappeared) under zinc deficient condition.