Creation of correlative cluster images of CBF and ¹¹C-flumazenil in PET

Keiichi Oda, Kenji Ishii, Yuichi Kimura, Shin-ichiro Ohashi^{*1} Hinako Toyama^{*2}, Toshiaki Sasaki^{*3}, Kiichi Ishiwata

Positron Medical Center, Tokyo Metropolitan Institute of Gerontology 1-1 Nakacho, Itabashi-ku, Tokyo 173-0022, Japan

*1School of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

*2Research Center for Charged Particle Therapy, National Institute of Radiological Sciences 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan

> *3Cyclotron Research Center, Iwate Medical University 348-58 Tomegamori, Takizawa, Iwate 020-0173, Japan

Abstract

In positron emission tomography (PET), accumulation of ¹¹C-flumazenil (¹¹C-FMZ) reflects benzodiazepine receptors in the central nervous system. ¹¹C-FMZ is widely used clinically, *e.g.*, in examination of patients with cerebrovascular disease (CVD), epilepsy, and degenerative diseases. In addition to ¹¹C-FMZ, cerebral blood flow (CBF) is measured using ¹⁵O-labeled gas or water. There have been a number of previous studies of the relationship between CBF and ¹¹C-FMZ.

We performed cluster analysis of the correlation map of CBF and ¹¹C-FMZ images in the same patient. We were able to create images that could be used for objective evaluation of the relationship between CBF and ¹¹C-FMZ.