Preparation and quality control of [¹¹C]raclopride for routine PET application

K. Terasaki, K. Takahashi*¹, M. Shozushima*², S. Goto *³, R. Iwata*⁴

Cyclotron Research Center, Iwate Medical University 348-58 Tomegamori, Takizawa 020-0173, Japan

*¹Research Institute for Brain and Blood Vessels Akita 6-10 Senshu-Kubota-machi, Akita 010-0874, Japan

*²Department of Dental Radiology, School of Dentistry, Iwate Medical University 19-1 Uchimaru, Morioka 020-8505, Japan

*³Japan Radioisotope Association, Nishina Memorial Cyclotron Center. 348-58 Tomegamori, Takizawa 020-0173, Japan

> *⁴CYRIC, Tohoku University Aramaki, Aoba-ku, Sendai 980-8578, Japan

Abstract

The purpose of this study is to optimize the synthesis [¹¹C]Raclopride, a radiopharmaceutical used in the imaging of brain dopamine D2 receptors with positron emission tomography (PET). The synthetic method is based on the loop labeling method with [¹¹C]methyltriflate. At ambient temperature [¹¹C]methyltriflate is passed through the loop loaded the precursor for 2 min. The reaction mixture of the loop was then purified with HPLC. For a 40 min irradiation with 30 μ A proton beam, 20 mCi of [¹¹C]raclopride ready for injection with >95% radiochemical purity was prepared for 40 min from end of bonbardment. The mean specific activity of [¹¹C]raclopride ready for injection was 37 GBq/µmol (1 Ci/µmol) at the end of synthesis.