Preparation and quality control of $[^{11}\text{C}]$raclopride for routine PET application

K. Terasaki, K. Takahashi*1, M. Shozushima*2, S. Goto *3, R. Iwata*4

Cyclotron Research Center, Iwate Medical University
348-58 Tomegamori, Takizawa 020-0173, Japan

*1Research Institute for Brain and Blood Vessels Akita
6-10 Senshu-Kubota-machi, Akita 010-0874, Japan

*2Department of Dental Radiology, School of Dentistry, Iwate Medical University
19-1 Uchimaru, Morioka 020-8505, Japan

*3Japan Radioisotope Association, Nishina Memorial Cyclotron Center.
348-58 Tomegamori, Takizawa 020-0173, Japan

*4CYRIC, Tohoku University
Aramaki, Aoba-ku, Sendai 980-8578, Japan

Abstract

The purpose of this study is to optimize the synthesis $[^{11}\text{C}]$Raclopride, a radiopharmaceutical used in the imaging of brain dopamine D2 receptors with positron emission tomography (PET). The synthetic method is based on the loop labeling method with $[^{11}\text{C}]$methyltriflate. At ambient temperature $[^{11}\text{C}]$methyltriflate is passed through the loop loaded the precursor for 2 min. The reaction mixture of the loop was then purified with HPLC. For a 40 min irradiation with 30 μA proton beam, 20 mCi of $[^{11}\text{C}]$raclopride ready for injection with $>95\%$ radiochemical purity was prepared for 40 min from end of bombardment. The mean specific activity of $[^{11}\text{C}]$raclopride ready for injection was 37 GBq/μmol (1 Ci/μmol) at the end of synthesis.