Effective synthesis of [¹¹C]PK11195 for clinical application by using loop method

K. Terasaki¹, Y. Ishikawa², T. Beppu³, M. Shozushima⁴, S. Goto⁵ and R. Iwata²

¹Cyclotron Research Center, Iwate Medical University 348-58 Tomegamori, Takizawa 020-0173, Japan

²CYRIC, Tohoku University Aramaki, Aoba-ku, Sendai 980-8579, Japan

³epartment of neurosurgery, Iwate Medical University 19-1 Uchimaru, Morioka, 020-8505, Japan

⁴Department of Dental Radiology, School of Dentistry, Iwate Medical University 19-1 Uchimaru, Morioka, 020-8505, Japan

⁵Japan Radioisotope Association, Nishina Memorial Cyclotron Center 348-58 Tomegamori, Takizawa 020-0173, Japan

Abstract

 $[^{11}C]PK11195$ is a specific ligand for the peripheral type benzodiazepine receptor and a marker of activated microglia, used to measure inflammation in neurologic disorders. A simple, rapid and fully automated preparation of $[^{11}C]PK11195$ was achieved with the automated methylation labelling system based on the loop method. To a solution desmethyl-PK11195 (1 mg) in MEK (60 µL) was added TBAOH (1 M in methanol, 6µL), and the solution loaded onto the loop. $[^{11}C]MeOTf$ passed through the loop at room temperature. The products of the reaction were then transferred by passing mobile phase to a semi-preparative HPLC system. The method produced $[^{11}C]PK11195$ in approximately 20 min after end of bombardment, with a 25-60% radiochemical yield (decay corrected yield from radioactivity trapped in the loop to isolated HPLC fraction). The final $[^{11}C]PK11195$ activities are sufficient for several human PET. Moreover, the method can be successfully applied for routine clinical application, proved to be a simplified alternative to the bubbling method.