Elemental analysis of materials of polymer gel dosimeters using PIXE

A. Terakawa¹, H. Saito¹, A. Kajiyama¹, H. Hosokawa¹, S. Matsuyama¹, M. Fujiwara¹, K. Ishii¹, S. Wada² and K. Sera³

¹Department of Quantum Science and Energy Engineering, Tohoku University 6-6-01-2 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan

²Kitasato University School of Veterinary Medicine 31-1 Towada, Aomori 034-8628, Japan

³Cyclotron Research Center, Iwate Medical University 348-58 Tomegamori, Takizawa, Iwate 020-0603, Japan

Abstract

Elemental analysis of materials of polymer gel dosimeters were performed using PIXE to evaluate concentration of medium-heavy elements in the materials because the medium-heavy elements have causative influences on radioactivation of the gel dosimeters when they are used in proton therapy. While K (130 μ g/g), Ca (60 μ g/g) and Fe (4 μ g/g) were detected in the sample, we did not detect a large amount of medium-heavy or heavy elements in the sample. In addition, although we measured gamma rays the gel samples which were irradiated at a dose of 2 Gy by an 80-MeV proton, no significant gamma rays due to the radioactivation were observed 24 hours after irradiation. Thus, polymer gel dosimeters can be used in proton therapy without serious radioactivation problems.