連載講座

超低レベル放射能測定の現状と展望(第2回)

地下測定室紹介と超低レベル放射能測定に よる最近の成果

小村和久

Reprinted from RADIOISOTOPES, Vol.55, No.5 May 2006

Japan Radioisotope Association http://www.jrias.or.jp/

超低レベル放射能測定の現状と展望(第2回)

地下測定室紹介と超低レベル放射能測定による最近の成果

小村和久

金沢大学自然計測応用研究センター低レベル放射能実験施設 923-1224 石川県能美市和気町オ24

Key Words : underground laboratory, gamma ray, background radiation, ultralow level radioactivity

はじめに

前号では,超低レベル放射能測定には宇宙線 の寄与の低減が重要であり,地下測定がさけら れないと述べた。今回は,超低バックグラウン ドを実現する最も有効な地下測定について,筆 者らの経験とヨーロッパ各地の地下測定室の現 状を紹介し,次いで極低レベル放射能測定技術 を活用した具体的な研究例について述べる。章 だては第1回講座に続いた形になっている。 「超低レベル」は今後の目標であり,現段階は 「極低レベル」にあるというニュアンスで「超」 と「極」を使いわけている。

4. 地下測定

地下測定に期待するのは,地上測定では除き きれない宇宙線起源のバックグラウンド計数の 低減である。一次宇宙線と窒素,酸素などの大 気成分との原子核反応によって生成する電子,

γ線,陽子,中性子等の二次宇宙線成分は、約 1 kg cm⁻²(水深換算 10 m)の空気層を通過して 海面レベルに到達するまでにかなり減衰してし まうので,バックグラウンドとしての寄与は小 さい。これに対して、透過力の大きいミュオン は,鉛等の遮蔽体と(µ-,xn)反応を起こして 中性子を発生させるので厄介である。中性子は, 主として弾性散乱によってエネルギーを失い, 最終的には捕獲反応によって消滅する。地磁気 緯度や太陽活動にもよるが、海面レベルにおけ る宇宙線起源の中性子(いわゆる環境中性子) の強度は 0.008 cm⁻²s⁻¹ 程度であり¹⁾, その平 均自由行程 (mean free path) は, 100~200 g cm⁻²である²⁾。したがって, 10 m の地下(1.5 ~ 2 kg cm⁻²) ではその寄与はほとんどなくな ってしまう。

地下における宇宙線起源のミュオン,核子成 分(陽子と中性子)及びミュオンとの反応又は 核分裂や(α ,n)反応に由来する中性子フラッ クスの深度分布を図1に示した³⁾。数 mwe(meter water equivalent 水深換算の深さ)より浅い と,原子番号の高い鉛はミュオンとの反応で中 性子を発生するので,中性子フラックスを逆に 高めるおそれがある。一方,核分裂及び(α ,n) 反応に由来する中性子強度は地下深度とは関係 なく,岩盤のウラン,トリウム及び軽元素の濃 度に依存するので,100 mwe 以上の地下では

[†]Present Status and Prospects of Ultralow Level Radioactivity Measurements(2). Underground Laboratory and Recent Topics Emerged from Ultralow Level Radioactivity Measurements.

Kazuhisa KOMURA : Low Level Radioactivity Laboratory, Nature and Environmental Technology, Kanazawa University, Wake, Nomi-shi, Ishikawa Pref. 923-1224, Japan.

図1 地下深度とミュオン及び中性子強度 (核反応で生成する中性子は深さには依存しない) 文献 3)より引用

核反応起源の中性子の寄与が相対的に大きくな る。このため、ミュオン強度が地表より5~6 桁以上も低減できる大深度の地下でも、図1か ら推定できるように中性子強度はあまり下がら ない。

極低バックグラウンド測定には 100 mwe 以 上の地下測定室が望ましいが,極低レベル放射 能測定のために新たなトンネルを掘れるような 機会はほとんどないので,ある程度は妥協して 既存のトンネルを利用せざるを得ない。この場 合,地下深度が深いことは重要な要素ではある が,アクセスやメンテナンスの容易さ,検出器 購入や測定室建設に充てられる経費,目的とす るバックグラウンドレベルなどを総合的に検討 してきめることが必要である。

4・1 地下測定における反同時計数

モナコの IAEA の海洋環境研究所 (Marine Environment Laboratory: MEL)の地下測定 室 (35 mwe)は、研究所から歩いて5分程度 の近くに建設された。ミュオン強度は約1桁し か減衰しないので、5 cm 厚のプラスチックシ ンチレータを用いた反同時計数法によってバッ クグラウンドの低減をはかっている。深度が浅 いため反同時計数の効果は顕著であり、地下 100~200 mwe クラスのバックグラウンド計 数を達成している⁴。 尾小屋地下測定室では、0.5 mmの極薄のプ ラスチックシンチレータによる反同時計数を行 い,バックグラウンド計数を低減させる計画が ある⁵⁾。薄いプラスチックシンチレータはミュ オンのような荷電粒子に対する検出効率は高い が,γ線に対する効率が低いという特徴がある。 反同時計数用のプラスチックシンチレータを内 部遮蔽と外部遮蔽の間にセットすることで,反 同時計数の信号強度を低く抑え,(μ⁻,xn)反 応で生成する中性子が捕獲されるまで数百 μs オーダーの長いブロック信号を出しても,Ge 検出器の不感時間を増加させない利点がある。 この方法によるバックグラウンド計数の低減目 標は1/3 である。

4・2 ラドン対策

地下測定では,比較的高濃度で存在するラド ン (²²²Rn, T_{1/2}: 3.83 d) に由来するバックグ ラウンド計数 (γ線の放出核は、ラドンの娘核 種で T_{1/2}:27 分の ²¹⁴Pb と半減期 T_{1/2}:19.9 分 の²¹⁴Bi)の低減が必要である。一方,トリウ ム系列のラドン(²²⁰Rn)は半減期が55秒と短 いので、遮蔽内に深く入ることがなく影響は少 ない。しかし、²²⁰Rnの娘核種の²¹²Pb(T_{1/2}: 10.64 h)は、静電気で引き寄せられやすいエ アロゾルや大気浮遊塵に付着して空気中に存在 するので、 試料交換のために 遮蔽を開けた際に、 遮蔽体や検出器のエンドキャップの表面に付着 してバックグラウンド計数を高めることがある。 このため「超」低レベル放射能測定では、測定 開始後の1~2日のデータを使わない方が安全 である。²¹⁴Pbと²¹⁴Biも²¹²Pbと同様に大気浮 遊塵に付着しバックグラウンド源となるが、半 減期が短いので最初の2~3時間だけ注意すれ ばよい。

金沢大学自然計測応用センターの尾小屋地下 測定室は、長さ546 mのトンネルのほぼ中央 にある。自然換気率は年間を通じて約6回h⁻¹ ある。ラドン濃度が低いので、ラドン対策とし ては検出器のヘッド周りの空間を最小限にして いる。また,液体窒素の蒸発ガスを導入して窒 素雰囲気にし,プラスチック容器又はポリエチ レン袋に封入した水銀を試料の上に置いて,上 部の空間容積を最小限にしている。

自然換気が期待できない長いトンネルでは, 大型送風機で強制的に外気を導入する必要があ る。仏伊国境のトンネル内にある地下測定室 (Laboratoire des Science du Climate et de l'Environment:LSCE,4800 mwe)ではアルプス の氷河地域の空気を取り入れることによって, また,神岡のスーパーカミオカンデでは活性炭 によるラドン吸着など3段階の工夫によって, ラドン対策をはかっている⁶。また,千葉県柏 の宇宙線研究所の地下測定室では,ラドン透過 性のないアクリル樹脂系のペイントを壁面に塗 布してラドンの散逸を防ぎ,ラドン濃度を数 Bq m³に保っている⁷。

4・3 地下測定に用いる遮蔽材

地下測定における遮蔽材に鉛と銅のどちらを 選択したら良いかと問われれば、²¹⁰Pb 濃度が 1 Bq kg⁻¹以下の鉛を入手できれば鉛の方を勧 めたい。

遮蔽で最も注意を払う必要があるのは、検出 器に直接面する内部遮蔽である。筆者の経験で は、2 cm 以上の「超」低バックグラウンド材 で内部遮蔽する方法がよい。IRMM-EU (Institute of Reference Material and Measurements, ベルギー, 500 mwe) では, 銅を内部遮蔽に用 いて極低バックグラウンド計数を達成している。 地上測定では鉛が銅よりも良い理由は第1回目 3・4・1 で述べたが、どの深さまで鉛が優位かに ついて興味ある事実がつい先日見つかった。 図2は、古い鉛で内部遮蔽した尾小屋(270 mwe)の93.5% 同軸型 Ge 検出器と, 銅で内 部遮蔽をした神岡(2700 mwe)の100%の同 軸型 Ge 検出器のバックグラウンドスペクトル のエネルギー依存性を比較したものである。太 い実線は神岡/尾小屋のバックグラウンド比, 細い実線は地上での銅/鉛のバックグラウンド

図2 内部遮蔽に鉛を用いた尾小屋と銅を用いた神 岡のバックグラウンドスペクトルの比較 (地上における銅/鉛の比が大深度でも成立し ていることから,鉛を使えば神岡のバックグ ラウンドはもっと下げられよう)

比を示している。500 keV 以下の領域の銅/鉛 比が2700 mweの大深度地下でも成立してい ることから,大深度でも鉛遮蔽が優位なことが わかる。内部遮蔽に古い鉛を使えば,神岡の検 出器のバックグラウンド計数は現在の1/2 以下 になろう。

銅は放射性不純物のおそれが少ないので,安 心して使える遮蔽材である。しかし,地上で長 期間保管すると,ミュオンや環境中性子との核 反応による誘導放射性核種が生成・蓄積する。 IRMM-EUでは,将来の使用に備えてトンレベ ルの銅の地下保管を提案しており,我が国でも 実施したいと考えている。鉛は放射化の心配は 少ないが,公害問題との絡みもあるので,廃材 として出される遮蔽鉛を尾小屋トンネル内に (数十年以上)保管して²¹⁰Pbの壊変を待つ予 定である。保管中にラドンの娘核種²¹⁰Pbが銅 や鉛の表面に付着・蓄積するのを避けるために 袋に封入しておくことと,使用前に表面を十分 に磨くことが必要である。

4・4 地下測定室における Ge 検出器のバッ クグラウンド

相対効率 93.5% の同軸型 Ge 検出器を,地 上で遮蔽なし,地上で遮蔽あり,尾小屋地下室 で遮蔽ありの3条件で測定したバックグラウン ドスペクトルを図3に示した。地上における

 図3 相対効率 93.5% の同軸型 Ge 検出器のバック グラウンドスペクトルの比較

 (a) は地上で遮蔽をしていない状態,(b) は 地上で通常鉛による基本遮蔽と古い鉛による 内部遮蔽をした場合,(c) は尾小屋で遮蔽し た場合

図4 尾小屋と他機関の Ge 検出器のバックグラウ ンドスペクトルの比較

100~2800 keV 領域のバックグラウンド計数 は,遮蔽なしで21900 cpm,遮蔽ありで41.7 cpmで,地上でも遮蔽により約500分の1ま でバックグラウンドを下げることができた(通 常の鉛では100~200分の1までは容易に下げ られるが,500分の1にするのは困難である)。 270 mwe の地下では更に30分の1になり,地 下測定がバックグラウンド低減に極めて有効な ことがわかる。

図4は,尾小屋に設置した相対効率93.5% の同軸型Ge検出器,他機関の相対効率110% 同軸型Ge検出器,地上で反同時計数を行った 相対効率 23%の井戸型 Ge 検出器, 30 mweの 地下に設置した相対効率28%の井戸型検出器 及び神岡に設置した相対効率100%の同軸型 Ge 検出器のバックグラウンドスペクトルを比 較したものである。相対検出効率による規格化 は行わず、縦軸を単純に cph keV⁻¹にとって いる。相対効率の違いを無視した荒っぽい議論 になるが、地上設置の Ge 検出器のバックグラ ウンド計数を基準にすると、30 mwe で約10 分の1, 地上で反同時計数を行うと約20分の1, 270 mwe で約 100 分の 1, 2 700 mw で約 200 分 の1であり、反同時計数及び地下測定がバック グラウンド低減に極めて有効なことがわかる。 神岡の Ge 検出器は,我が国でバックグラウン ド計数が最も低い検出器であるが、銅を内部遮 蔽に使っているため 400 keV 以下の領域は尾 小屋との違いはあまりない。ミュオン強度が尾 小屋の 500 分の1 しかない神岡のバックグラウ ンド計数が期待したほど下がっていない理由は, 内部遮蔽に銅を使っていることに加え、トンネ ルを構成している岩盤(尾小屋:凝灰岩,神岡: 花崗岩)のウランとトリウム濃度が高く、ウラ ン (²³⁸U) の自発核分裂又は軽元素と α 粒子と の(α,n)反応で発生する中性子強度が高いこ とによると考えられる。

4・5 ヨーロッパ諸国の地下測定室

ヨーロッパには、極低レベル放射能測定を目 的とする地下測定室(35 ~ 4800 mw)が多い。 JCO ウラン加工工場臨界被ばく事故の際に、 日本の環境放射研究者が一丸となって事故調査 にあたり成果を挙げたことを教訓に、ヨーロッ パでも緊急時に対応できる測定体制が必要と考 え、CELLAR (<u>Collaboration of European Low-</u> level underground <u>LAboRatories</u>)というグル ープが組織された⁸。CELLAR の集会はヨーロ ッパで開催される国際会議の際に行われており、 筆者は、第3回(モナコ 2002)、第4回(ウイ ーン 2003)、第5回(モナコ 2004)に参加し、 ヨーロッパ諸国の地下測定室の実情や研究につ

र म कोर संद	ST. PR. 46. F	玉	深さ		Ge検出器			
サイチモアバ	設直地点		(m)	(mwe)	同軸型	平板型	井戸型	合計
欧州-IRMM	ギール	ベルギー	225	500	3	1		4
Max Planck	ハイデルベルク	ドイツ	~7	15	3		1	4
VTKA	ドレスデン	ドイツ	47	110	2		1	3
LSCE	フレジュストンネル	フランス	1750	4800	2		1	3
INFS-LNGS	グランサッソ	イタリア	1400	3800	2			2
IAEA-MEL	モンテカルロ	モナコ	14	35	2		2	4
РТВ	ブラウシュバイク	ドイツ	925	2100	2 (Broad Energy)		2	
アイスランド大	レイキャビク	アイスランド	165	360	NaI(Tl)		1	
金沢大	尾小屋	日本	135	270	1	6	8	15
東京大	神岡	日本	1000	2700	1			1

表1 欧州及び日本の地下放射測定室

IRMM: Institute of Reference Material and Measurements

VTKA: Verein für Kernverfahrenstechnik und Analytic Rossendorf

LSCE: Laboratorie des Science du Climate de l'Environment

INFN-LNGS: Instituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Gran Sasso

IAEA-MEL: International Atomic Energy Agency's Marine Environment Laboratory

PTB: Physikalisch-Technische Bundesanstalt.

いての知見を得ると共に,尾小屋の設備や最近 の研究成果を紹介してきた。

CELLAR グループの地下測定室紹介パンフ レット(2003 年版)のデータに,尾小屋及び 神岡のデータを加え表1にまとめた。各測定室 の詳細は,第5回環境放射能・放射線研究会報 告書⁹⁾で紹介したので参照していただきたい。 この他に,ベルン大学(スイス)には70 mwe の地下測定室があり,2 台の Ge 検出器(1996 年 訪問時)と自作のガスカウンタを使い,大気中の 放射性ガス(³H, ¹⁴C, ³⁹Ar)を測定している。

図5に、地下深度とGe検出器のバックグラ ウンド計数及びミュオンの減衰を示した。縦軸 は、検出器1kgあたりのバックグラウンド計 数で規格化した相対値である。原図4,100は深さ がリニアスケールになっているが、図1との比 較及び比較的浅い地下の効果を強調するために 対数スケールとした。モナコの地下室は35 mweと浅いが、反同時計数を採用することに よって100~200 mwe 相当のバックグラウン ド計数を達成しており、270 mwe の尾小屋と 500 mwe の IRMM はミュオンの減衰曲線近く

図5 Ge 検出器のバックグラウンド計数と地下深度

まで,バックグラウンド計数の低減に成功して いる。しかし,1000 mweより深い地下測定室 では,ミュオン強度の減衰から期待される程バ ックグラウンド計数が低くなっていない。これ は,検出器構成材や遮蔽材中の放射性不純物濃 度の違いのほか,岩石中のウラン,トリウム及 び軽元素濃度の違いによるものと考えられる。 イタリアのグランサッソ(3800 mwe)の検出 器は世界一バックグラウンド計数が低く,尾小 屋の約30分1という極限の低バックグラウン ドを達成している。

101110	检山四 相対効率 检山四の仕様		体積	バックグラウンド 計数(100-2000 keV)			サゴのサイブ
快出奋	(%)	検出品の任体	(cm³)	(cpm)	(cpd kg ⁻¹)	(cpd cm ⁻²)	井戸のサイス
平板型 Ge	18.2	28cm ² x 2 cm	56	0.48	2285	7.4	
	18.2	28cm ² x 2 cm	56	0.57	2714	8.8	
	28	38cm ² x 3 cm	113	0.57	1333	5.8	
	28	38cm ² x 3 cm	113	0.54	1216	5.3	
井戸型 Ge	73.5	7.4cm	311	1.33	1359	7	2.1 cm \u00f6 x 6 cm
	70.5	7.4cm φ x 8.0 cm	311	1.3	1501	6.9	2.1 cm \u03c6 x 6 cm
	64.7	7.5cm φ x 8.0 cm	344	1.2	930	6.2	2.1 cm \u03c6 x 6 cm
	52	6.8cm	231	1.94	2273	11.5	1.6 cmø x 6 cm
	37	6.1cm \u00f6 x 5.6 cm	151	0.82	1450	7.1	1.0 cm x 6 cm
同軸刑 Ge	93.5	7.9cm.dx 87.1.cm	379	1 12	788	5.4	

表2 重量及び表面積で規格化したバックグラウンド計数

図5は、同軸型,平板型あるいは井戸型検出 器を区別せずに重量で規格化してあるが,この 方法では,平板型>井戸型>同軸型という系統 的な違いが出てしまうので,重量よりも表面積 で規格化するほうが公平である。表2は、尾小 屋地下測定室の11台のGe検出器(同軸型1, 井戸型6,平板型4)のバックグラウンド計数 を重量と表面積で規格化したもので,表面積で 規格化すると近い値になり,各検出器の遮蔽状 況をよく反映している。

5. 極低バックグラウンド γ 線測定の例

5·1 原爆誘導核種 ¹⁵²Eu の測定

多量の試料を用いた極低バックグラウンド測 定の例として,原爆中性子誘導核種¹⁵²Euの測 定がある。原爆中性子誘導核種¹⁵²Euは, 1976年 8月に原爆ドーム内の可搬型 Ge 検出器により in situ で発見され¹¹⁾, 原爆放射線被ばく線量の 暫定評価法(TD65: Tentative Dose 1965)再 評価に多数の測定が行われた。しかし、遠方資 料の測定データが少ないことから、新線量評価 法 (DS86¹²⁾) では、参考データとして記載さ れるに留まった。その後、遠方試料の¹⁵²Euデ ータが蓄積すると、1km以遠で実測値と計算 値の不一致(実測>計算)が1桁を超えること がわかり、⁶⁰Coでも同様な傾向が示唆された。 これがDS86の再評価の契機となった。過去 に¹⁵²Euが検出されたとされる試料を尾小屋で 測定したが、検出できない試料が多いことから、 kg レベルの被ばく試料を用いて¹⁵²Eu を再測定 することになった。2002 年 8 月までにブラン ク試料を含む 17 試料が尾小屋で測定された。

図6は,被ばくした1kgの花崗岩から分離 したユウロピウム試料の1週間測定で得た γ 線スペクトルである。化学処理で除去しきれな かった²²⁷Acの娘核²¹¹Pbの342.7 keV γ線の 妨害はあるが,¹⁵²Euの344.3 keV γ線の検出 に成功しており,1408 keV γ線も確認され ¹⁵²Euが確実に検出できたことがわかる。多量 の試料と極低バックグラウンド検出器再測定に よって,爆心から1.2 km 地点まで理論計算と 良く一致することが明らかになった。1.4 km 地点まで¹⁵²Euの検出に成功した正味の計数率 は0.0028±0.0007 cpmという極めて低いもの であった。測定の詳細については,原爆線量評 価法 DS02 を参照していただきたい¹³。

ターゲット核	同位体存在度 (%)	断面積 (10 ⁻²⁴ cm ²)	生成核	半減期]
²³ Na	100	0.53	²⁴ Na	15.0	h
²⁷ Al	100	0.11	²⁴ Na	15.0	h
⁴⁵ Sc	100	27	⁴⁶ Sc	83.8	d
⁵⁵ Mn	100	13.3	⁵⁶ Mn	2.58	h
⁶³ Cu	69.1	4.5	⁶⁴ Cu	12.7	h
⁵⁹ Co	100	20	⁶⁰ Co	5.27	у
⁷⁵ As	100	4.5	⁷⁶ As	26.4	h
$^{81}\mathrm{Br}$	49.48	3	82 Br	35.3	h
¹¹⁵ In	95.7	73	^{116m} In	54	m
¹²¹ Sb	57.25	6	¹²² Sb	2.7	d
¹³³ Cs	100	28	134 Cs	2.06	у
¹³⁹ La	99.911	8.9	¹⁴⁰ La	1.68	d
¹⁵⁴ Sm	22.53	5	¹⁵⁵ Sm/ ¹⁵⁵ Eu	0.4/4.76	h/y
¹⁵¹ Eu	47.77	5300	¹⁵² Eu	13.5	у
¹⁵¹ Eu	47.77	2800	^{152m} Eu	9.30	h
¹⁵³ Eu	52.23	320	¹⁵⁴ Eu	8.59	у
¹⁷⁴ Yb	31.84	46	¹⁷⁵ Yb	4.20	d
$^{186} m W$	28.4	40	187 W	23.7	h
¹⁸⁵ Re	37.07	110	¹⁸⁶ Re	3.72	d
¹⁸⁷ Re	62.93	70	¹⁸⁸ Re	16.7	h
¹⁸¹ Ta	99.9877	21	¹⁸² Ta	114.4	d
191 Ir	38.5	750	¹⁹² Ir	73.8	d
¹⁹³ Ir	61.5	110	¹⁹⁴ Ir	17.4	h
¹⁹⁷ Au	100	98.8	¹⁹⁸ Au	2.70	d

表 3 環境中性子誘導核種

5・2 環境中性子による天然の誘導放射性核 種発見と極低フラックス中性子のモニ タリング

極低バックグラウンド Ge 検出器による化学 試薬の測定で、「天然」誘導放射性核種、 ⁴⁶Sc (T_{1/2}:83.79 d)、⁶⁰Co (T_{1/2}:5.2714 y), ¹³⁴Cs (T_{1/2}:2.062 y),¹⁵²Eu (T_{1/2}:13.542 y), ¹⁵⁴Eu (T_{1/2}:8.593 y),¹⁵⁵Eu (T_{1/2}:4.761 y), ¹⁸¹Ta (T_{1/2}:114.43 d),¹⁹²Ir (T_{1/2}:73.831 d) 及び¹⁹⁸Au (T_{1/2}:2.695 d)が相次いで発見さ れた¹⁴⁾。図7に検出例を示した。これらは、環 境中性子(地表レベルで0.008/cm²/s)捕獲反 応で生成したものであり、航空機搭乗あるいは

図7 環境中性子によって生成した**Scの検出 7gの酸化スカンジウムを93.5%同軸型Ge 検出器で351840秒測定(極微量の**Scの他 に試料に含まれている放射性不純物のピーク が見える)

登山実験によって,地上では検出することが困 難な多くの中性子誘導核種,^{116m}In(T_{1/2}:54.5 m) と ⁵⁶Mn (T_{1/2}: 2.58 h) ほか, ²⁴Na (T_{1/2}: 14.96 h), ⁶⁴Cu (T_{1/2}: 12.7 h), ⁸²Br (T_{1/2}: 35.30 h), ^{152m}Eu (T_{1/2}: 9.274 h), ¹⁴⁰La (T_{1/2}: 1.678 d), ¹⁷⁵Yb (T_{1/2}: 4.185 d), ¹⁸⁷W (T_{1/2}: 23.72 h), ¹⁸⁶Re (T_{1/2}: 90.64 h), ¹⁸⁸Re (T_{1/2}: 16.98 h) 及び ¹⁹⁴Ir (T_{1/2}: 19.15 h) の検出に成功したも のである (表 3)。地上レベルでは,中性子捕 獲断面積が数十 b (10⁻²⁴ cm²) 以上, 航空機搭 乗実験では 1 b 以上であれば、検出可能である。

²⁴Na は ²³Na (n, γ)²⁴Na 反応のほか,速中性子 による²⁷Al (n, α)²⁴Na 反応によっても生成する ので、中性子フラックスの高い上空における速 中性子の評価に利用できる。また、生成断面積 が 98.8 b の ¹⁹⁸Au (T_{1/2}: 2.7 d) は、測定した い地点に 1 週間もおけば十分検出できるので、 中性子モニタリングに適している。0.1 ~ 0.2 mm 厚の 20 g の金板で 10⁻³ cm⁻² s⁻¹ のレベル の中性子を困難なく測定できる。JCO 臨界事 故では、住民から借用した指輪やネックレス等 を測定し漏えい中性子の評価を行った¹⁵⁾。

金は化学的に安定であり、地中、水中、金属 中、あるいは高温環境など、カウンタ実験では 不可能な過酷な条件でも中性子を測定できる。 数か月の長時間の曝露が許されれば、¹⁹²Ir (T_{1/2}:73.83 d)を用いて $10^{-4} \sim 10^{-5}$ cm⁻² s⁻¹ レベルの中性子フラックスの評価も可能である。

5·3 環境中の宇宙線生成核種 (²²Na)

大気上層で宇宙線によるアルゴンの破砕反応 で生成する²²Na (T_{1/2}: 2.6019 y, 1 274 keV) は,数年から10年スケールの地球化学的現象 を解明するためのトレーサとして有望である。 通常の検出器で大気中の²²Naを検出するには, 数万 m³の空気のろ過が必要である。しかし, 極低バックグラウンド検出器では,3000 ~ 5000 m³の空気をろ過して大気浮遊塵を集めれ ば,検出可能である。図8は,3000 m³の空気 のろ過により²²Naを検出した例である。²²Na のほかに極微量の¹³⁷Cs と極めて多量の⁷Be が検 出されている。

図8 大気中の²²Na及び¹³⁷Csの検出 舳倉島で石英ろ紙で採取した3009m³相当の 空気中の大気浮遊塵試料を37%井戸型Ge検 出器で428282秒測定(²¹⁰Pbや⁷Beのピーク と比較すると濃度の低さがわかる)

ドライフォールアウトあるいは降水に伴うウ エットフォールアウトとして地表や水面に降下 した水を追跡するために²²Naをトレーサに用 い,琵琶湖の湖水の滞留時間を推定した研究も 行われている¹⁶⁾。この研究では,²²Naの測定に, 琵琶湖の湖水のほか,雨水及び流入河川水をそ れぞれ 500 L 用いている。

			1
核種	半減期	壊変様式	検出器
¹⁸ F	109.7 m	β^+	Ge
^{34m} Cl	32.0 m	β-	Ge
³⁷ Ar	35.0 m	EC	X*
³⁸ Cl	37.24 m	β-	Ge
³⁹ C1	55.6 m	β-	Ge
³¹ Si	2.62 h	β-	LSC**
³⁸ S	2.84 h	β-	Ge
²⁴ Na	14.96 h	β-	Ge
²⁸ Mg	20.9 h	β-	Ge
³² P	14.26 d	β-	LSC**
³³ P	25.3 d	β-	LSC**
⁷ Be	53.3 d	EC	Ge
³⁵ S	87.5 d	β-	LSC**
²² Na	2.609 у	β^+	Ge
$^{3}\mathrm{H}$	12.33 у	β-	LSC**/MS
³⁹ Ar	269 у	β-	ガスカウンター
¹⁴ C	5730 y	β-	LSC**/AMS***
³⁶ Cl	3.01E+05 y	β-	AMS***
²⁶ A1	7.40E+05 y	β-	Ge/AMS***
¹⁰ Be	1.51E+06 y	β-	AMS***

表4 宇宙線と大気成分との核反応で生成する宇宙 線誘導核種

*X線用ガスカウンター ** 液体シンチレーションカウンター *** 加速器質量分析計 5・4 雨水中の短寿命宇宙線生成核種

大気上空では,²²Naのほかにアルゴンの破 砕反応によって表4に示す宇宙線生成核種が生 成している。これらは数百Lの雨水を分析す ることによって1950~60年代に相次いで発見 されたが,生成量の多い⁷Be,³H,¹⁴Cなどを除 いてほとんど測定されていない。半減期が短い ことに加え,濃度が極めて低くて測定が困難な ために,トレーサとしては利用できなかった。 短寿命宇宙線生成核種の測定には,

(1) 多量の雨水の短時間採取,

(2) 迅速な化学分離・濃縮,

(3) 極低バックグラウンド放射能測定

の3条件の克服が必要である。筆者らは,屋上 を利用した集水,陰・陽イオン交換法による短 時間濃縮,尾小屋地下測定室の利用で,短半減 期の³⁸Cl (T_{1/2}:37.24 m),³⁹Cl (T_{1/2}:55.6 m), ¹⁸F (T_{1/2}:109.77 m),³⁸S (T_{1/2}:170.3 m), ²⁴Na (T_{1/2}:14.96 h),²⁸Mg (T_{1/2}:20.9 h)の 5 核種の同時検出に成功した。この他に⁷Beと ²²Na が検出できる。雨試料のγ線スペクトル 測定例を図9に示した。

この研究は,解析モデルの開発など多くの課 題が残っているが,大気上空で起きている現象, すなわち雨滴の生成高度における宇宙線と大気 成分との核反応,雨滴の寿命や滞留時間,降雨 による物質の輸送など,気象学や大気化学,地 球化学,地球物理学分野に貢献するものと期待 される。研究の概要については,Isotope News 2005 年 10 月号の「展望」欄¹⁷⁾で紹介したので 参照されたい。

5·5^{108m}Agによる銀の汚染

イカをはじめとする海産物でしばしば検出さ れる^{108m}Ag(T_{1/2}:4.18 y)及び^{110m}Ag(T_{1/2}: 249.9 d)は、核爆発実験に由来すると考えら れている。1970年代のNature 誌¹⁸⁾に、^{110m}Ag で汚染された銀が市場に流通しており、銀鉱石

図 9 雨の迅速測定で検出された短寿命宇宙線誘導核種 93.5% Ge 検出器で 61 400 秒測定(このほかに¹⁸F(511 keV)及び ⁷Be(478 keV)が検出されている)

の採掘に核爆発を使った可能性が指摘されてい た。筆者が^{108m}Agで汚染された銀に出合った のは、尾小屋の Ge 検出器のバックグラウンド 低減に銀板を使った時であった。当初は環境中 性子による誘導核種である可能性を考えたが, 実験室にある銀試薬や新たに購入した試薬全て で^{108m}Agが検出されることから、人工起源で あることがわかった。汚染がいつごろから始ま ったかを知るために、製造年のわかっている記 念銀貨を測定した。図10に示すように、江戸 末期の加賀藩の一分銀(全量170g)では検出 されないが,東京オリンピック記念銀貨(1964) と札幌オリンピック(1972)記念銀貨では検出 されたことから, 1964 年には人工起源の^{108m}Ag による汚染がすでに始まっているものと推察さ れる。

5・6 ^{108m}Agを用いる新しい原爆中性子の評価 原爆中性子によって生成した¹⁵²Euと³⁶Clの 測定結果が,理論計算と一致することが明らか になり,DS02の発表(2006.2)で一応の完結 をみたと考えられる。DS02に続く研究課題を

図 10 加賀藩の一分銀(上),東京オリンピック記 念銀貨(中)及び札幌オリンピック記念銀貨 (下)のγ線スペクトル ^{108m}Agによる銀の汚染レベルは極めて低いが, 写真フィルムや印画紙に銀塩が使われている ことから,超高感度フィルム等では「かぶり」 を引き起こす懸念がある。 考える中で,^{108m}Agを用いる中性子評価法を思 い付いた。核データからの計算では,純度100% の銀を使えば,ppmレベルしか含まれていな いユウロピウムから生成する¹⁵²Euと比較し て,^{108m}Agの測定が3桁以上有利なことがわか った。感度が高いので,¹⁵²Euでは測定できな かった1.4 km以遠の中性子線量の評価と, DS02に基づく計算の実証に使うことができる。 また,指輪やロザリオなど,身につけていた銀 製品を測定すれば,被ばく者が浴びた中性子線 量を直接評価できるので,¹⁵²Eu測定では得ら れなかった貴重な情報を得ることも可能である。 更には,半減期が長いので,今後1000~2000 年にわたり中性子評価に使えるという大きなメ リットがある。

広島平和記念資料館から拝借した銀製の勲章 からは、予期した通り高濃度の^{108m}Agが検出 された。そのほか、真鍮製の指輪や刀の鍔など 不純物としてしか銀を含まない被ばく試料の非 破壊γ線測定で、極めて微量の^{108m}Agを検出 することにも成功した。図11に^{108m}Agの検出 例を示した。

5・7 大気中⁷Be と²¹⁰Pb 変動の高解像度解析 ²²²Rn とその娘核種を除いて,大気中に存在 する放射性核種の濃度変化を1~数時間間隔

 図 11 似島に埋葬された原爆犠牲者の真鍮製の指輪の γ 線スペクトル
 93.5% 同軸型 Ge 検出器で 359 935 秒測定 (不純物として含まれていた銀の放射化で生成した^{108m}Ag が検出されたことからも,銀による中性子評価法の感度の高さがわかる)

で測定することは困難であった。大気の輸送や 混合などのトレーサとして有効な ²¹⁰Pb や ⁷Be は古くから測定されているが、 γ 線放出率が低 く、 γ 線測定には少なくとも数百 ~ 1000 m³ の空気のろ過が必要であった。このため、²¹⁰Pb や ⁷Be により時間解像度で大気などの変動を解 析するのは困難であり実施例がなかった。

極低バックグラウンド井戸型 Ge 検出器を使 えば、10 m³ の大気(ハイボリュームサンプラ で10 分相当)中の²¹⁰Pb と ⁷Be の同時測定が可 能である。これによって²²²Rn なみの時間分解 能で濃度変化を測定できるようになった。これ までに、台風や前線の通過時、降雪時など大き な気象変化に伴う²¹⁰Pb を ⁷Be の変動を解析し 多くの新しい知見が得られるようになった¹⁹。 5・8 隕石中の宇宙線生成核種

隕石中の宇宙線生成核種は極低レベル放射能 測定の典型的な例である。核種濃度が極めて低 い上に半減期の短い核種が多いので,大型の極 低バックグラウンド Ge 検出器による迅速測定 が必要である。図 12 は,落下 21 時間後に測定 を開始することができた 1999 年 9 月 26 日落下 の神戸隕石 (62 g)の測定例である(つくば隕 石では,落下 7 時間後に国立科学博物館が測定 開始した)。極低バックグラウンド Ge 検出器 による迅速測定のおかげで,²⁴Na(T_{1/2}:15 h) のほか²⁴Mg(T_{1/2}:20.9 h),⁴³K(T_{1/2}:22.3 h) 及び ⁵⁷Ni(T_{1/2}:36 h)をはじめ約 20 の極微量 の宇宙線誘導核種の検出に成功した。²⁴Mg,⁴³K 及び ⁵⁷Ni の検出は世界初である²⁰⁾。

図 12 落下 21 時間後から測定した神戸隕石(62 g)のγ線スペクトル 93.5%の同軸型 Ge 検出器で 305 438 秒測定

図13 カリウム除去の効果

低レベル放射能測定の感度向上法と試薬 の放射能汚染

6・1 カリウム除去によるコンプトン散乱線 の寄与の低減

試料中に混在する放射性核種の高エネルギー γ線のコンプトン散乱線が,極低レベル放射性 核種の検出を著しく妨害することがある。検出 器に関連したバックグラウンドでなく,試料由 来のバックグラウンドである。環境試料で は⁴⁰K がこの種のバックグラウンド源となる。 海産物や農産物ではカリウム含有量が高いので, 乾燥,灰化,加圧成型等による減容によって検 出効率を高めても,極低バックグラウンドGe 検出器を使うメリットはあまりない。しかし, カリウムを除去すると試料由来のバックグラウ ンドを飛躍的に低減することができるので,極 低バックグラウンド放射能測定の効果が発揮される。図13は、海藻試料を灰化しただけの場合と、カリボール(カリウム沈殿試薬)を用いてカリウム含有量を500分の1に低減した場合のγ線スペクトルである。カリウムの除去で ⁷Be,²²⁶Ra,²²⁸Ra等の検出感度が飛躍的に高まった。残念ながら、この処理法ではカリウム処理の際に¹³⁷Csが除かれてしまう。筆者らは高価なカリボール試薬を使わずに、カリウムを50~100分の1に低減可能な簡便な処理法を開発し、環境放射能のモニタリングに活用している²¹⁾。

6・2 共沈法組み合わせによる測定試料の有 効利用

海水試料の¹³⁷Csを測定するために,古くか らリンモリブデン酸アンモニウム (AMP) に

汚染核種	物質
¹³⁷ Cs, ⁶⁰ Co	すべての物質
	金属酸化物
²²⁶ Ra	カルシウム試薬
	バリウム試薬
²²⁷ Ac (T _{1/2} 21.7 y)	ランタン
とその娘核種	スカンジウム
$^{3}\mathrm{H}$	リチウム
¹³⁷ Cs, ¹³⁴ Cs	セシウム
表4参照	中性子捕獲断面積の 大きな物質

表5 試薬等の放射能汚染

よる選択的沈殿濃縮法が用いられている。海水 には、¹³⁷Csの他にも多くのウラン及びトリウ ム系列核種が存在しており、表層海水の場合に は⁷Beも検出される。更には、放射性廃棄物の 海洋投棄に由来する⁶⁰Coや^{108m}Ag,¹¹⁰Agなど の人工放射性核種が含まれている可能性がある ことから、せっかく採取した貴重な海水試料か ら可能な限り多くの情報を得る努力が必要と考 えられる。

筆者らは、AMPによる¹³⁷Csの捕集後、硫 酸バリウムによるラジウム同位体の沈殿捕集と 水酸化鉄沈殿によるウラン及びトリウム同位体 と²¹⁰Pbの捕集を行っている。これらの沈殿を 乾燥・混合し、油圧器で円柱状の測定試料を作 成したのちに大型井戸型 Ge 検出器でγ線測定 すれば、採取試料が有効利用され多くの情報が 得られる。

6・3 試薬の放射能汚染

希土類元素には、ランタン(¹³⁸La)、サマリ ウム(¹⁴⁷Sm)、ルテチウム(¹⁷⁶Lu)など天然の 放射性同位体を有するものがある。また、元素 によっては不純物としてかなり多量の放射性物 質が含まれている。近年、希土類元素の工業的 利用が多くなったが、放射性同位体や放射性不 純物の存在についてあまり配慮されていない。 物性研究においては放射能や放射線が重要な影 響をもたらす可能性があり、場合によっては誤 った結論を導く恐れがある。 試薬等に含まれている放射性不純物は,通常 の化学的分析法では検知できないほど濃度が低 いが,バリウム試薬のラジウムのように放射能 が高いものもある。高純度試薬とうたいながら, 放射化学的純度の悪いものがあることを知って おくことも必要である。高純度試薬中の放射能 汚染の例を表5に示した。

6・4 ラジウム含有量の低いバリウムの利用

海水中に存在する極低濃度のラジウム同位体 の測定には、硫酸バリウムによる共沈濃縮法が 広く使われている。精度のよい測定には、ラジ ウム濃度の極めて低いバリウム担体を使用する 必要がある。極低バックグラウンド Ge 検出器 を使い、10 L 程度の少量の海水試料を測定す る場合には、添加するバリウム担体中の²²⁶Ra が無視できることが望ましい。市販のバリウム 試薬には、化学的純度とは関係なく高濃度の ²²⁶Ra を含むものが多い。バリウム試薬や X 線 検診の造影剤として使われている硫酸バリウム

図 14 特級の硫酸バリウム,特級の塩化バリウム, 最も²²⁶Ra 汚染の少なかった造影材のγ線ス ペクトル

など、多くの試料を測定し、ラジウム汚染が極 めて低い (²²⁶Ra 1.5 mBq g⁻¹, ²²⁸Ra<0.1 mBq g⁻¹) 造影材を見つけたので、海水のラジウム 同位体の測定に使用している。図 14 に、特級 の硫酸バリウム、特級の塩化バリウム、最も ²²⁶Ra 汚染の少なかった造影材の γ 線スペクト ルを示した。

おわりに

内容がかなり片寄ってしまったことをお許し 頂きたい。尾小屋地下測定室の建設とその利用 により,上に紹介した多くの研究が可能になっ た。環境中性子誘導核種の発見,^{108m}Agを用い る原爆中性子の新しい評価法など,思いもよら なかった興味あるテーマが見つかった。「極低 レベル放射能測定」,「超低レベル放射能測定」, に向けて測定装置の充実と改善の努力を重ね, 新しい研究分野の開拓を目指したい。幸い,平 成17年度から5か年にわたり「極低レベル放 射能測定による新しい研究領域の開発と全国共 同利用微弱放射能測定拠点の形成」というテー マに対し特別教育研究経費が交付され3台の極 低バックグラウンド仕様の大型 Ge 検出器が購 入された。

尾小屋地下測定室の見学,共同研究,トンネ ルを利用した研究テーマの提案,測定装置の設 置等の申し出を歓迎する。

文 献

- 1) Hewitt, J. E. et al., Natural Radiation Environment III, Vol.2, USDOE, p.853-881 (1980)
- Kodama, M. et al., Natural Radiation Environment III, Vol.2, USDOE, p.895 (1980)
- Heusser, G., Ann. Rev. Nucl. Part. Sci., 45, 543-590 (1995)

- Povinec, P. P. et al., Appl. Radiat. Isot., 61, 85-93 (2004)
- Hamajima, Y. and Komura, K., Appl. Radiat. Isot., 61, 179-183 (2004)
- Fukuda, S. et al., Nucl. Instrum. Methods Phys. Res. Sect., A501, 418-462 (2003)
- 7) 大橋英雄(東京海洋大学)私信
- Collaboration of European Low-Level Laboratories (ed. Hult, M.) (2003)
- 9) 小村和久, KEK Proceedings 2004-8, 336-341 (2004)
- Laubenstein et al., Appl. Radiat. Isot., 61, 167-172 (2004)
- 版上正信,小村和久,京都大学原子炉実験所報告KUR-RI-TR-155(1976)
- 12) US-Japan Joint Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki, Final Report, Radiation Effects Research Foundation (1987)
- 13) Komura, K. et al., Reassessment of the Atomic Bomb Radiation Dosimetry for Hiroshima and Nagasaki–Dosimetry System 2002, Radiation Effects Research Foundation, Chap. 8I (2006)
- Komura, K. et al., Proc. Int. Workshop on Distribution and Speciation of Radionuclides in the Environment, Rokkasho, Aomori, Japan. Oct.11-13, p.210-217 (2000)
- 15) Komura, K. et al., J. Environ. Radioact., 50, 77-82 (2000)
- Sakaguchi, A. et al., *Earth Planet. Sci. Lett.*, 231, 307-316 (2005)
- 17) 小村和久, 桑原雄宇, Isotope News, 618, 2-6 (2005)
- 18) Lindner, L. et al., Nature, 240, 463-464 (1972)
- 19) Komura, K. et al., Int. Congr. Ser., 1276, 227-230 (2005)
- 20) Komura, K. et al., Geochem. J., 36(4), 333-340 (2002)
- Inoue, M. et al., J. Radioanal.Nucl. Chem., 255(1), 211-215(2003)