Development of an automated system for synthesizing ¹⁸F-labeled compounds using [¹⁸F]fluoromethyl bromide

K. Terasaki*¹, Y. Ishikawa*², M. Shozushima*³, H. Shiraishi*⁴, S. Goto*⁵, R. Iwata*²

*¹Cyclotron Research Center, Iwate Medical University 348-58 Tomegamori, Takizawa 020-0173, Japan

> *² CYRIC, Tohoku University Aramaki, Aoba-ku, Sendai 980-8578, Japan

*³ Department of Dental Radiology, School of Dentistry, Iwate Medical University 19-1 Uchimaru, Morioka 020-8505, Japan

*⁴ Department of Orthopedic Surgery, School of Medicine, Iwate Medical University 19-1 Uchimaru, Morioka 020-8505, Japan

*⁵ Japan Radioisotope Association, Nishina Memorial Cyclotron Center. 348-58 Tomegamori, Takizawa 020-0173, Japan

Abstract

An automated system was developed to synthesize [¹⁸F]fluoromethyl bromide ([¹⁸F]FMeBr), which is ¹⁸F-labeled compound for a synthetic precursor. [¹⁸F]fluoromethylcholine (fluoromethyl-dimethyl-2-hydroxyethylammonium[FCH]) is a promising candidate as a oncologic probe in applications for brain tumors, prostate carcinoma. Using 3.7 GBq of [¹⁸F]F⁻ as starting activity, [¹⁸F]FMeBr was obtained in a radiochemical yield of 20-43% (based on [¹⁸F]fluoride-) at end of the syntheses (EOS). [¹⁸F]FCH was prepared by the passage of [¹⁸F]FMeBr through an cation exchange cartridge which is charged with 2-dimethylaminoethanol in a radiochemical yield of 56% (based on [¹⁸F]FMeBr, corrected for decay). The total synthesis time was 42 min from the end of bombardment and the developed system has proved to be reliable and reproducible.