Development of an automated system for preparation of [¹⁸F]fluoromethylcholine

S. Goto*¹, K. Terasaki*², Y. Ishikawa*³, M. Shozushima*⁴, H. Shiraishi*⁵ and R. Iwata*³

*¹Japan Radioisotope Association, Nishina Memorial Cyclotron Center 348-58 Tomegamori, Takizawa, Iwate 020-0173, Japan

> *²Cyclotron Research Center, Iwate Medical University 348-58 Tomegamori, Takizawa, Iwate 020-0173, Japan

*³CYRIC, Tohoku University Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan

*⁴Department of Dental Radiology, School of Dentistry, Iwate Medical University 19-1 Uchimaru, Morioka, Iwate 020-8505, Japan

*⁵Department of Orthopedic Surgery, School of Medicine, Iwate Medical University 19-1 Uchimaru, Morioka, Iwate 020-8505, Japan

Abstract

[¹⁸F]fluoromethylcholine ([¹⁸F]FCH), which has a longer half life than its [¹¹C] analogue, is a promising candidate as an oncologic probe in application for brain tumors and prostate carcinoma. For effective synthesis of [¹⁸F]FCH, the existing system for synthesizing [¹⁸F]FMeBr was modified to add a silver triflate column through which the [¹⁸F]FMeBr is converted to [¹⁸F]fluoromethyl triflate, a more reactive [¹⁸F]fluoromethylating reagent. With this system connected to a module for synthesizing choline, [¹⁸F]FCH was produced, resulting in the average radiochemical yield of 15.9% at the end of the syntheses (EOS). Using 3.7 GBq of [¹⁸F]F⁻ as the starting activity, 0.59 GBq of [¹⁸F]FCH is obtained, which enables a couple of clinical PET studies in a day. The total synthesis time is 20 min from the end of bombardment. The renewd system has proved to be reliable and reproducible.