

福島の森林資源における放射性セシウム 汚染の新たな計算モデル構築

雅和 小嵐 太田 淳

Ota Masakazu

Koarashi lun

1. はじめに

(国研)日本原子力研究開発機構は、これまでに陸 面(地面付近の大気,植生及び土壌)における熱.水. 二酸化炭素等の物質循環を計算するモデル 「SOLVEG」¹⁻³⁾,及びその発展版として,放射性核 種(放射性セシウム、放射性ヨウ素、トリチウム、 放射性炭素)の動きを計算する「SOLVEG-R」^{4,5)}を 開発してきた。本稿では、東京電力ホールディング ス(株)福島第一原子力発電所(以下,「1F」)事故 への適用事例として, SOLVEG-R モデルを用いた 福島県内の森林における樹木の放射性セシウム汚染 のメカニズム解明について述べる。

2. 事故後の森林樹木汚染

福島県は林業が盛んで、スギ等の針葉樹から生産 される建材や、コナラ等の広葉樹から生産されるき のこ原木や薪は重要な林産物である。1F 事故で汚 染された森林では、これらのきのこ原木、薪の出荷 制限(乾重量当たりの放射性セシウム濃度として 50 Bq/kg(きのこ原木)及び40 Bq/kg(薪))が続 いており、制限の解除に向けては、森林樹木の木部 (幹の内部の木化した部分)の放射性セシウム濃度 の将来変動の把握が重要となる。

木部の汚染に影響する過程として、チェルノブイ リ原子力発電所事故後の研究から、次のような森林 内の放射性セシウムの動きが挙げられている。 ①森林に降下した放射性セシウムは、一部が樹木に 付着し、葉や樹皮表面から樹木に吸収される。

- ②葉や樹皮に付着した放射性セシウムは、降雨によ る洗浄や、落葉・落枝によって林床の落葉層へ移 動した後、落葉・落枝の分解と降雨による抽出で 土壌へと移動する。
- ③土壌への放射性セシウムの移動・蓄積にともない. 根からの吸収が増加する。
- ④放射性セシウムは、樹木内を循環しながら一部が 木部に蓄積する。
- ⑤放射性壊変による減衰の他、樹木(木部)成長に より、木部の放射性セシウム濃度が低下(濃度希 釈) する。

森林樹木の木部の放射性セシウム濃度を予測する ために、各国の研究機関において、前記の過程を予 測する計算モデルが開発されてきた。しかし、その ほとんどが森林や樹木内の物質の動きを決定するプ ロセスを計算することなく,評価対象とした森林に おける放射性セシウムの濃度変動の観測結果を用い て計算モデル内のパラメータを調整して、予測を行 うものであった。そのため、計算モデルの適用は観 測結果が存在する地点に限られていた。

また、多くの計算モデルは、チェルノブイリ事故 の影響を受けた地域を対象としており、森林土壌と して砂質な土壌を、樹種としてヨーロッパアカマツ (常緑樹)を考慮している。一方.森林内の放射性 セシウムの動きは、土壌特性や構成樹種によって異 なるため、火山灰起源の粘土質な土壌を有する福島 県の森林や、1F事故時に葉が無かったコナラ等の 落葉樹林には、計算モデルを適用できなかった。

このように、福島県内の森林に広く適用できる計 算モデルはなく、1F事故後の樹木の汚染メカニズ ムや,将来にわたる汚染状況の変化は明らかにされ ていなかった。

3. 開発したモデルの特徴

そこで、1F事故後の樹木汚染のメカニズムを明 らかにするために、筆者らは、森林内の放射性セシ ウムの動きを詳細に予測する新たな計算モデル 「SOLVEG-R」を開発した^{4,5)}。開発した計算モデル の特徴は、以下のとおりである。

- 樹木を含む森林内の放射性セシウムの動きを図1 のようにモデル化し、気象データを入力値として 陸面の水循環と植物成長を計算するモデル^{1.3)}に 組み込んでいる。これにより、気象データのある すべての森林について、水循環で駆動される放射 性セシウムの動き(前項②,③)や樹木成長の影響(前項⑤)を計算でき、放射性セシウムの濃度 変動の観測に依存することなく、様々な森林に適 用できる。
- 樹木の地上部を部位ごとに多数に分割し、各部位について放射性セシウムの大気沈着や降雨洗浄、樹木内部への吸収等を設定できるようにした。これにより、1F事故時に葉があった常緑樹と葉が無かった落葉樹共に、樹木の部位間の放射性セシウムの動きを計算できる。
- 土壌中の放射性セシウムには、粘土との相互作用

図1 SOLVEG-R が考慮する放射性セシウムの動き 落葉樹は事故時に葉(図中の赤*)が無いものとして模擬

を考慮できるモデル⁴⁾を導入した。これにより, 火山灰起源の粘土質な土壌が分布する福島県の森 林にも適用できる。

4. 福島県内森林への適用

この計算モデルを,福島県内のスギ人工林(1F 事故時の¹³⁷Cs 大気沈着量 68 kBq/m²)とコナラ天 然林(同 510 kBq/m²)に適用した⁵⁾。その結果, 図2に示すように1F事故時に放射性セシウムが直

図2 1F 事故から9年間の樹木の部位別の放射性セシウム量の計算値(線)と観測値(四角) スギ林での2015年の葉の観測値は枝とほぼ同値であり、マーカーが隠れている

図3 1F事故から9年間の樹木内の放射性セシウム移動量の計算値(年間値)

接付着した葉,枝,幹樹皮だけでなく,幹の内部に 位置する木部でも事故直後から放射性セシウム量が 増加した。そして,およそ10年にわたり増加が継 続した。この結果は観測をおおむね再現している。 これは,図3に示す放射性セシウムの樹木内の移動 量から,事故時に樹木表面に付着した放射性セシウ ムが葉(スギ)や枝樹皮・幹樹皮(コナラ)から速 やかに吸収され,樹木内で異なる部位間を循環し続 ける間に一部が木部へと蓄積し続けたためと分かっ た(例:スギでは,葉から枝樹皮→枝樹皮から幹樹 皮→幹樹皮から幹木部へと放射性セシウムが移動 (図3))。これより、1F事故時に樹木に付着した放 射性セシウムが、事故以降続いている内部(木部) 汚染の引き金となったことが判明した。このモデル 計算を50年間継続し、将来にわたる汚染状況の変 化を予測した。木部汚染の引き金となった、葉や樹 皮表面に付着した放射性セシウムは、降雨による洗 浄や落葉により、数年以内に樹木から除去された (図2の細線)。その結果、図4に示すように、コナ ラでは2017年から濃度が低下しはじめた。放射性 セシウムの吸収が主に葉で起きたスギでは、葉と枝 を経由して放射性セシウムが樹木内を移動したた

め、木部への蓄積にやや遅れが生じ、2020年から 濃度が低下しはじめた。これらの濃度の低下は、木 部に蓄積した放射性セシウムの放射性壊変(1年に およそ2%)のみでなく、樹木(木部)成長によっ ても進行し(濃度希釈,1年におよそ1%),その 結果、放射性壊変による減衰よりも速く濃度が低下 することが分かった(1年におよそ3%)。この減 少傾向が将来にわたって続くと仮定した場合、今回 対象としたコナラ林(放射性セシウム大気沈着量 510 kBq/m²) においては, 事故から 68 年後 (2079 年) に木部の濃度が出荷制限値(きのこ原木 50 Bq/kg) 未満に下がると予測された。ただし、モ デル計算値と実測値に差があることや、検証用の測 定データが事故後6年間に限られていることから (図2,図4)、今後も現地調査を継続してモデルに よる予測結果の検証を進める必要がある。

更に、福島の森林特有の知見も見いだされた。チェ ルノブイリ事故では、樹木表面の放射性セシウムの 除去にともない、事故から数十年以内に根からの吸 収が木部汚染の主要因となった。これは、降水が少 なく、落葉の分解が遅いチェルノブイリの森林では、 分厚く堆積した落葉層に放射性セシウムが長期間滞 留し、落葉層内の樹木の根がこれを吸収したためで あった。一方、今回対象とした森林では、図3に示 すように根からの吸収は低く保たれ、50年間の樹 木全体の吸収量の1%に満たないものであった。こ れは、福島県の森林が以下のような特徴を持つため と考えられる。

- 降水が多く、落葉の分解が早いため、林床の落葉 層に蓄積した放射性セシウムは速やかに土壌へ移 動した⁶。
- ●火山灰由来の粘土質な土壌が放射性セシウムを固定するため、土壌中では放射性セシウムは、根が吸収できない状態で存在している⁷。

以上より,福島県の森林では根からの放射性セシ ウムの吸収は少なく,今後木部の濃度増加は起こら ないと考えられる。

5. 今後の展望

開発した「SOLVEG-R」は、観測データを用いた チューニングに頼らない汎用的な計算モデルであ る。そのため、今回の評価地点以外にも福島県内の 様々な地点の森林に適用することで、沈着量が異な る地域について、将来における木材の出荷制限の解 除のタイミングの目安を試算することができる。ま た、樹木汚染の事後解析のみでなく、今後想定され うる森林管理の事前評価にも活用できる。例えば, 「SOLVEG-R」は落葉層の放射性セシウムの動きを 考慮しているので、落葉層を取り除く除染を実施し た場合、木部の放射性セシウム濃度がどの程度低減 するのか評価可能である。樹木の成長も考慮するの で、森林再生(伐採と植樹)後の木部の放射性セシ ウム濃度の長期予測も可能である。今後は、こういっ た福島県の森林・林業再生に向けた取組みに対して, 「SOLVEG-R」の活用が期待される。

参 考 文 献

- 1) Yamazawa, H., Environ. Model. Softw., 16, 739-751 (2001)
- 2) Nagai, H., J. Appl. Meteorol., 44, 1574-1592 (2005)
- 3) Katata, G., et al., J. Geophys. Res., 116, D20102 (2011)
- 4) Ota, M., et al., Sci. Total Environ., 551, 590-604 (2016)
- 5) Ota, M., et al., Sci. Total Environ., 816, 151587 (2022)
- Koarashi, J., et al., J. Radioanal. Nucl. Chem., 320, 179-191 (2019)
- 7) Koarashi, J., et al., Chemosphere, 165, 335-341 (2016)

((国研)日本原子力研究開発機構)