利用技術

中性子によるコンクリート構造物の非破 壊イメージングおよび定量評価法

藤田 訓裕 Fujita Kunihiro

1 はじめに

近年、国内外において橋(橋梁)やトンネルといっ た交通インフラの老朽化が社会問題となっている。 橋梁の経年劣化で緊急性が高いのが、床版と呼ばれ る鉄とコンクリートで構成される構造物である。床 版はアスファルト等の舗装の下にあって、利用者の 荷重を直接支えている重要な構造物だが、このコン クリートのセメント成分が流れ出し、石や砂利のみ が残る土砂化と呼ばれる現象が問題となっている。 このような劣化は上面の舗装を剥がさないと確認で きないため、放置した結果、ある日突然道路に穴が 開く(抜け落ち)といった事象も報告されている。 このような大事故につながる破壊を防ぐためだけで はなく、定期検査を行い損傷が小さいうちに補修を することで、トータルの維持費を低減させる予防保 全というやり方が提唱されて久しいが、こと床版に 関しては、金銭的、時間的コストがかかるという理 由で、ほとんど行われていないのが現状である。

そこで、床版上層の舗装を剥がすことなく、健全 性を判別するための装置として、理研独自開発の小 型中性子源 RANS, RANS-II¹⁾を使った中性子散乱 イメージング法のシステム開発を行ってきており、 これまでに様々な成果をあげてきている²⁻⁸⁾。そし て、将来的には車輌搭載型中性子源 RANS-III を用 いて、全国の橋梁の非破壊検査を行うことを目標と している(図1)。

図1 (予想図)RANS-III を用いた床版劣化の計測

2 中性子散乱イメージング

2.1 中性子を用いた非破壊検査

中性子と物質(の原子核)との散乱確率は同位体 毎に異なっており,水素をはじめ軽元素との散乱確 率は高いが,鉄等の金属は比較的透過しやすいとい う特徴を持っている。特にインフラ構造物でよく使 用される鉄鋼に対して高い透過力を持つため,非破 壊検査に有効なプローブと言える。しかし従来,高 速中性子を用いたイメージングは透過を用いたもの がほとんどで,これには中性子の発生源と検出器で 計測対象物を挟み込む必要がある。そのため,橋梁 の床版のような巨大な構造物を検査するには,路面 と反対側(桁の裏側)にアクセスする足場を組む必 要がある等,莫大なコストが必要であったり,そも そも不可能であったりする。

図2 散乱イメージング法の概念図

2.2 中性子散乱イメージング

散乱中性子イメージングとは高速中性子のビーム を検査対象物に照射し,中性子が内部で物質と散乱・ 減速をおこなった結果,計測対象物の表面(後方) まで戻ってきた中性子の位置分布を計測する手法で ある。この概念図を図2に示しているが,この手法 では中性子源と検出器が計測対象物に対して片側に 存在するため,対象を挟み込む必要がないという利 点がある。

2.3 時間情報を用いた水分・空隙の分離

表面に戻ってくる中性子の分布は、内部を伝搬す る際に経路上に存在する物質の元素組成と密度に依 存した応答を示す。ここで、劣化によってコンクリー ト内部に水分が含まれている場合、中性子が散乱さ れ、減速される確率が多くなり、結果熱中性子の発 生量が多くなる。しかし、水分は熱中性子の遮蔽と しても働くため、コンクリートのより深くから戻っ てくる中性子にとっては遮蔽の効果となり、熱中性 子数は減少する。一方、空隙の場合は、コンクリー トが存在しないことによって表面近くの中性子に とっては散乱・減速が起こらないため、熱中性子発 生量の減少に働くが、奥深くから戻ってくる熱中性 子に対しては遮蔽が少なくなることによる、中性子 数の増加の効果となる。このように、表面に戻って くる熱中性子と内部の水分や空隙の量は単純な比例 関係にはならないことが分かっている。

そこで、筆者らが注目したのが、コンクリート内 部での伝搬時間の差を用いる方法である。RANS、 RANS-IIの中性子は時間的にパルス構造を持ってい るビームであるため、床版に高速中性子ビームを照 射した瞬間から、熱中性子が検出器に到達するまで の時間を計測することが可能である。水分と空隙で は伝搬時間の違いが現れると考え、時間でフィル ターをかけることで、両者を識別することを試みた。 具体的な計測条件は粒子輸送シミュレーション Geant4を用いて見積もりを行った⁷⁾。

3 実験セットアップ

3.1 小型中性子源RANS-II

小型中性子源である RANS-II は, 陽子加速器, ビー ム輸送系、リチウム標的、ターゲットステーション で構成されている。陽子加速器は RFQ 線形加速器 と呼ばれるもので、本手法に必須である陽子のパル スビームを得ることができる。2.49 MeV まで加速 された陽子はビーム輸送系を通り、リチウム標的ま で導かれ. そこで⁷Li+p→⁷Be+n 反応を起こし中 性子を発生させる。このとき、中性子のエネルギー スペクトルは約0.8 MeV を最大値とした連続分布 を持つ。リチウム標的の周囲は放射線遮蔽のために、 ポリエチレン、鉛、ボロン含有ポリエチレン、そし て鉛を用いた多層構造のターゲットステーションと 呼ばれる遮蔽体で囲われている。最も中性子フラッ クスの高い陽子ビーム軸方向に長さ500mm,面積 150×150 mm²の開口部が設けられており、そこか ら中性子ビームが放出される。今回の計測ではより 微小な欠陥を見やすくするため. ビーム径をより小 ポリエチレンコリメータを挿入した。

3.2 試験体

床版の試験体は、アスファルト層、欠陥挿入穴付 き鉄筋コンクリート(RC)床版層、コンクリート 床版層、RC床版層の4層で構成されている(図3左)。 2層目のRC床版中心には100×100×70 mm³の 穴が開けられており、ここに欠陥ブロックと健全な コンクリートを挿入することができる。

コンクリートが水分で侵食されると、セメント成

図3 実験セットアップ(左),接着剤型(中央),及び袋詰め型(右)の欠陥ブロック

分が流され、粗骨材(石)と細骨材(砂利)だけが 残る土砂化の状態になる。土砂化した床版では上(路 面) 側は乾燥した骨材で、下側は湿った砂利が堆積 していると考えられている。この状態を模擬するた めに3種類の欠陥ブロックを用意した。1つ目は、 砂利と石を接着剤で封入した「接着剤型」のブロッ クで、接着剤の中には多くの水素が含まれているた め、土砂化が起こった後に雨等で水浸しとなった状 態と見なすことができる(図3中央)。2つ目は、 骨材の石をテフロン製の袋に詰めて固定した「袋詰 め型」のブロックで、健全なコンクリートより空隙 が多い自然乾燥した状態の土砂化と見なすことがで きる (図3右)。3つ目は、2つ目の袋詰型とポリエ チレン板を組み合わせた「滞水土砂化型」のブロッ クで、現場で起きている滞水した土砂化(上側が空 隙、下側が水分)により近い状態と考えられる。

3.3 検出器

検出器はヘリウム3ガスを用いた比例計数管であ り,有効面積が600×600 mm²である。2次元イメー ジを得ることができ,位置分解能は縦が8 mm(中 心部)及び12.7 mm(上下端部)で,横方向は 4 mm程度である。この検出器は位置だけでなくビー ム発生から検出器到達までの時間情報を計測できる ため,中性子が計測対象物内部の伝搬に要した時間 を取得できる。

4.1 イメージング

欠陥ブロックを挿入した状態で中性子ビームを照 射して,得られた2次元イメージングの結果を図4 に示している。左図が40mm厚の接着剤型土砂化 ブロックで,右図が30mm厚の袋詰め型土砂化ブ ロックの結果である。縦軸,横軸は床版の正面から 見て縦,横方向を表しており,色はコンクリートが 健全な状態と比べて比の値を反映しており,中性子 収量が増えると暖色(黄色~赤色),減少すると寒 色(水色~青色)を示す。

接着剤型の結果では、欠陥位置を中心として 10%以上の中性子収量の増大(緑、黄色の領域) が確認できることから、水素との散乱で熱中性子が 多く生成された効果が観測できていると考えられ る。袋詰め型の結果では、中心部分で5%程度中性 子収量比が減少(青色の領域)している。これは、 空隙の存在による熱中性子の減少が観測できている ことを意味している。以上の結果から、本手法で水 分と空隙の2次元イメージングが行えることが示さ れた。

4.2 定量評価

欠陥の有無を定量的に評価するために,図4で示 した2次元図を数値化した。床版の縦(y)方向に

図4 水分・空隙のイメージング結果

中性子数の比を足し合わせた1次元のプロットを作成した結果を図5に示している。横軸は垂直方向の検出位置で、縦軸は中性子収量の比を表している。赤線、青線がそれぞれ接着剤型、袋詰め型の結果を示している。水分が含まれている接着剤型はy=0mmを中心に1以上の正のピークを示し、空隙のある袋詰め型は1以下の負のピークを示している。

この手法で欠陥の体積を定量評価できるかを確認 するために、ピークの積分値を求め、欠陥の厚さと の相関を求めた。その結果を図6に示している。こ のグラフでは、欠陥の厚さを横軸に、積分値を縦軸 に表示しており、水分(水素)を含んだ模擬欠陥で は傾きが正の比例、空隙では傾きが負の比例関係を 持つことが見て取れる。すなわち、欠陥の体積を定 量評価できているということが示された。また、本

図5 水分・空隙の定量評価

図7 時間情報を用いた,水分・空隙の識別

測定手法では少なくとも湿った土砂 10 mm 厚(空隙 33 cm³ 相当), 乾いた土砂 30 mm 厚(空隙 99 cm³ 相当)の欠陥が検知可能であるということも確認された。

4.3 水分と空隙

前節では、欠陥が水分もしくは空隙だけである場 合には、中性子収量比の積分値の正負から判別でき ることが示されたが、両方が含まれる滞水土砂化型 の場合を、水分もしくは空隙だけの場合と区別して 識別をするために、時間情報を用いたイベント選別 条件を探索した。コンクリート中の伝搬時間が短い 成分(検出タイミングが早い)と長い成分(検出タ イミングが遅い)それぞれでイベント選別を行い、 中性子収量比の位置分布を求めた。その結果を図7 に示している。

検出タイミングが遅い成分は水分を含む接着剤型 と同じ正のピークを示す一方,早い成分は空隙だけ である袋詰め型と同じ負のピークを示していること が明らかとなった。ここで,このピーク積分値を 図6の緑点のバツ(早い成分)と三角(遅い成分) で示している。グラフから,時間のタイミングで正 負が入れ替わることが確認できるため,適切な時間 でイベント選択をすることで水分と空隙,両方の存 在を分別して検知することが可能であることが示さ れた。

5 まとめと今後の展望

今回開発した技術は鉄筋コンクリートの床版だけ でなく、コンクリートの構造物全般に適用可能であ る。また、開発中のトラック搭載型小型中性子源 RANS-IIIと組み合わせることで、様々な橋梁での 非破壊劣化診断が可能になると期待できる。

計測システムすべてがトラックに搭載可能となる ことで橋梁,トンネルをはじめ,様々なインフラ構 造物の定期診断が容易になり、コンクリート劣化の 初期段階で補修ができれば、インフラ維持の低コス ト化や長寿命化に寄与できると期待できる。

参考文献

- T. Kobayashi, et al., Nucl. Instr. and Meth. Phys. Res., A994, 165091 (2021)
- 2) 大竹淑恵, 他, JACIC 情報, 110, 29(1), 62-69 (2014)
- 3) 大竹淑恵, 非破壊検査, 64, 221-224 (2015)
- 2)池田義雅,他、コンクリート構造物の補修,補強、 アップグレード論文報告集,17,285-290 (2017)
- Y. Otake, et al., Journal of Disaster Research, 12(3), 585-592 (2017)
- Y. Ikeda, et al., Plasma and Fusion Research, 13, 2406005-1-5 (2018)
- 7)藤田訓裕,他,第11回道路橋床版シンポジウム論 文報告集,47-52 (2020)
- 8)藤田訓裕,他,コンクリート構造物の補修,補強, アップグレードシンポジウム論文集,21,484-489 (2021)
- (前 理化学研究所 光量子工学研究センター 中性子 ビーム技術開発チーム,現 三菱電機(株))