

放射線環境下での腐食データベース

佐藤 智徳 (Sato Tomonori)^{*1} 端 邦樹 (Hata Kuniki)^{*1} 加治 芳行 (Kaji Yoshiyuki)^{*1} 田口 光正 (Taguchi Mitsumasa)^{*2} 清藤 一 (Seito Hajime)^{*2} 井上 博之 (Inoue Hiroyuki)^{*3} 多田 英司 (Tada Eiji)^{*4} 阿部 博志 (Abe Hiroshi)^{*5} 秋山 英二 (Akiyama Eiji)^{*5} 鈴木 俊一 (Suzuki Shunichi)^{*6}

1. はじめに

福島第一原子力発電所(以下, 1Fとする)の原 子炉建屋内部の滞留水は,燃料デブリや飛散した Cs等放射性物質による強い放射線場にある。この 水は運転中の冷却水で使用される純度の高い水とは 異なり,緊急冷却時に注入された海水の成分,鋼材 から溶出した Fe²⁺等多くの不純物の影響を受けて いると考えられた。また,現在は N₂ ガスでパージ されている¹⁾が,今後の廃炉作業に伴い開放され る可能性もあり,滞留水の位置や状況により,様々 な溶存酸素濃度となることが推測される²⁾。

このような滞留水が置かれている環境から, 1F における放射線環境下での腐食において検討すべき 環境条件の大まかな範囲を図1に示す。比較のため, 従来研究において,検討が多くなされた,運転中の 軽水炉の冷却水及び地層処分の処分場で想定される 地下水の環境についても示した。1F 炉内で想定さ れる環境は,導電率は処分場と同程度かそれ以下で あると考えられ,溶存酸素(DO)濃度については 0~8 ppmの範囲で考える必要がある。線量率につ いては,数 Gy~数+ kGy/hの線量率を考える必要 がある等,従来多く研究報告がなされてきた環境と は大きく異なっていることが分かる³⁾。

そこで、1Fの廃炉工程の円滑化に資することを 目的として、放射線環境下での腐食トラブルの発生 可能性,対策等を議論するうえで有用な情報である、 水の放射線分解(ラジオリシス)及び放射線照射下

図2 1Fにおける放射線環境下での腐食概要図

での腐食試験データ,1F廃炉工程における潜在的 腐食影響の検討結果を「放射線環境下での腐食デー タベース」としてまとめたのでここで紹介する⁴⁾。

2. 放射線環境下での腐食データベース

1F 構造材のような放射線環境下にある鋼材の腐 食は、図2に示すように、ラジオリシスによる水質 変化が発生している腐食環境にさらされながら進行 していくと考えられる。

そこで、本データベースは、このような放射線環 境下での1Fの腐食に関して、放射線環境下での腐 食環境を解析するために必要な情報を取りまとめた ラジオリシスデータベース、放射線環境下での腐食 データを取りまとめた放射線環境下腐食データベー ス、及び1Fでの構造材に関する潜在的腐食影響に 関して取りまとめた腐食調査票データベースからな る構成とした。以下にそれぞれの詳細を紹介する。

①ラジオリシスデータベース

放射線場に水がある場合にラジオリシスにより発 生する化学種、ラジカル種の中で腐食の観点から最 も重要な化学種の1つは過酸化水素(H₂O₂)で、炭 素鋼の腐食を加速させる、ステンレス鋼の腐食電位 を上昇させ局部腐食発生リスクを増加させる等の影 響が報告されている^{5.6)}。また、1Fでは事故直後の 緊急冷却のための海水注入、その後の淡水注入、地 下水の流入等により、多量の不純物を含む水が建屋 内へ流入した。また、燃料デブリからの溶出物、構 造材からの溶出物等も不純物源となるため、多種多 様な不純物混在系を考慮する必要がある。したがっ て、1F で発生するラジオリシス現象を予測するた めには、1F 特有の不純物の影響を考慮した解析が 必要である。

そこで、このような複雑な1F格納容器内の水質 に関して、数値解析により予測するために必要な情 報として、基本となる水の分解生成物に関するラジ カル種の39の反応式に加え、塩化物イオンに関す る48の反応式、臭化物イオンに関する61の反応式、 硫酸イオンに関する15の反応式、炭酸イオン、炭 酸水素イオンに関する28の反応式、鉄イオンに関 する24の反応式の合計179の反応式及び反応速度 定数を取りまとめデータベース化した^{4,7-9}。(図3)

図3 ラジオリシスデータベースの概要

図4 H2O2生成における不純物イオン濃度の影響に関する ラジオリシス解析結果

データベースを用いた解析として, H₂O₂の生成 量における Cl 及び Br の影響を解析した結果を図4 に紹介する。 海水中には 6×10^{-1} mol/L の塩化物イオン, 8×10^{4} mol/L の臭化物イオンが含まれており, そのような高濃度では, 10,000 Gy/h の高線量条件下では, 溶存酸素濃度によらず,高濃度の H₂O₂ が生成されることが推測された。一方,現在の 1F 格納容器内では,脱塩が進み,かつ, N₂ ガスパージによる脱酸素もなされているため, H₂O₂ の生成は,抑制されていると推測される解析結果となった。

②放射線環境下腐食データベース

放射線環境下での鋼材の腐食に関しては,前述の とおり,軽水炉や処分場の機器,構造物を対象とし て,研究がなされてきた。また,IF事故後には, IFの構造材を想定した評価も実施され,情報が蓄 積されてきている状況であった¹⁰⁾。そこで,これ までに公開されている放射線環境下での鉄基合金の 腐食速度や腐食電位に関する文献を調査し,腐食速 度データ等の調査結果を文献ごとに個別の整理表と してまとめると共に,文献から読み取れる環境条件 (温度,水質,照射条件等)と腐食速度や腐食電位 を一覧表にまとめ,データベースとした⁴⁾。整理票 及び一覧表の概要を図5に紹介する。詳細は JAEA-Review 2021-001「放射線環境下での腐食データベー ス」をご参照いただきたい。

1Fでは、格納容器内での燃料デブリの臨界制御 の観点から、ホウ酸塩注入の検討がされていた。一 方従来研究においては、ホウ素はラジオリシスに影 響しないことが報告されていたが、腐食へは影響す ることが報告されていた^{11,12)}ため、放射線の影響 が重畳した際にどのような腐食形態となるのかデー タを取得する必要があった。そこで、炭素鋼の腐食 形態におけるホウ酸塩の寄与を、海水成分の中でも 特に鋼材の腐食への寄与が大きい塩化物イオンと共 に変化させ、放射線影響も含めて、炭素鋼の腐食形 態マップとしてまとめた⁴⁾。取得データをまとめた 腐食形態マップを,図6に示す。ホウ酸塩濃度が高 くなると、炭素鋼が不働態化し、塩化物イオン濃度 が高くなると、不働態被膜が破壊され、局部腐食が 発生するリスクが増加するため、塩化物イオンの抑 制が必要となる。

また, 文献調査より, 従来の腐食への放射線影響 に関する検討は, そのほとんどが, 溶液中に浸漬し た鋼材に関して実施されていたため, 喫水線腐食や

腐食速度などの情報

(a) 放射線下での腐食に関する整理票

		IDe a	新 (初期)・ 第 5 5 5 5 5 5 5 5 5 5 5 5 5	60 10 10	滝	ræ-	pH~ (前)+	pH~ (後)+	pH+* (早均)+	HeOs (p	0₂ 温度· 第 sm)+ (*C)+ 非	補/~ 吸 ■照射~	k収験量率 (kGy/h)∺
	IDe:	試験片(材料)	い 第2 同2 第2 第2	客渡い		pH< ph (前)⊷ (银	₩ pH	+ Не 9)+ (ор	0:s 0; m)⊷ (ppr	a 温度・ n)+ (*C)+	照射/~ 吸 非照射→	収験量率)kGy/h)∺	012
ID⊖	試験片(村	(料)・ 第一 第一	溶液。	pHer (前)+	pH~ (後)+	pH+* (平均)*	HeOc (ppm)+-	O2 (ppm)+	温度 [。] (*C)	服射/~ 非照射~	吸収線量率 (kGy/h)+1	0+3	1004
1-1+2	SM400B+1	An-	人工海水□	_⊓⊷	⊓⊷	+2	Гe	ne	80	非照射	0+2	L004+2	0.04~
1-2+1	SM4008+3	Are	人工海水∺	0+2	Dei	2	C+2	De	80~2	照射⊷	0.004+2	0.04@	0.4+3
1-3-2	SM400Be3	Are	人工満水≓		R€	0	Γø	∏r≓	800	照射。	0.04~	0. 4 e3	120
1-4:1	SM4008/3	A r [⊕]	人工海水。	Ue.	LI6	-0	Ŀø	Ltes	80=1	照射。	0.41	12⊷	120
2-1+1	純鉄中	大気	ImM NaCi+ ImM HCi∺	ne	⊓e	3.24-3	Γ₽	ne	室温の	照射の	12-2	12 ^{c²}	120
2-2-	純鉄中	大気。	1-mM-NaCl++10-mM- HtBOx ⁻¹	UP)	Lte	6.78-1	Le	цю	室温の	照射中	121	12 ^{c³}	1200
2-3-1	純鉄の	大気の	1-mM-NaCl-←	Lt-2	Le	7.42	Le	Цe	室温中	照射の	120	12⇔	0+2
2-4-1	純鉄↔	大気ー	1 mM NaCl + 1 mM NaOH=	042	De2	9.75	[43	D+2	室温の	照射⊷	120	012	0:3
2-5-	純鉄中	大気	1-mM-NsOI+-1-mM- HOI-2	П÷	R≓	4.37-1	Гe	R₽	室温の	非照射	0+1	013	D+2
2-5-1	純鉄~1	大気。	1-mM-NeCI+-10-mM- H:RDx-	e3	Lf4	6.59+1	Ľ4ª	Lk3	室温の	非照射。	0:1	0+2	121
2=7+1	純鉄↩	大気~	1·mM·NaCl·+	042	Dei	7.98⊷	C+2	0+°	室温	非照射一	0+2	12e ²	1213
2-8-1	純鉄中	大気。	5-MINaCI+-1 mM-HCI	e ne	∏e	3.36-2	Γø	Re	変温の	照射の	120	12e ³	
2-9-1	純鉄小	大気。	5-M-NaCI-+-10 mM- H/BDer ²	6.0	L1e	4.6-1	L4	Lka	室温の	照射ぐ	1213	1	_

(b) 放射線下腐食に関するデータベース

図5 放射線環境下腐食に関する整理票とデータベース

図6 4ホウ酸塩濃度と塩化物イオン濃度に関する腐食形態 マップ

(○印:照射環境(4 kGy/h), ◇印:非照射環境, UC:全面腐食, LC:局部腐食, PA:不動態) 大気腐食への評価に関する検討例が少なく,データ が不足していたことから,喫水線部での炭素鋼腐食 への放射線影響,及び炭素鋼の気相中腐食における 気相ラジオリシスにおける生成物の1つであるオゾ ンの影響に関して新たにデータを取得した^{4,13,14)}。

γ線照射下で実施した炭素鋼の喫水線腐食試験で

取得された試験片の表面の試験後の喫水線部近傍の 観察結果を図7に紹介する。放射線下では、喫水線 部における腐食加速に加えて、放射線による腐食加 速が重畳するため、より腐食進行が速くなることが 確認された。

炭素鋼の大気腐食へのオゾンの影響を、炭素鋼の

	○ 腐食検討 対象設備	© 腐食依計対象↔ 対象設備検討課題↔			水環境(温 度、pH) ↔	水質↔ (アニオン種、 導電率) ↔	鋼種の	腐食モードロ			
席食の主要パラメータ+ 総合検討対象の 対象設備除計課題や			酸化剤。	水環境(温 度、pH) ↩	水質↔ (アニオン種、 導電率) ↔	鋼種中	腐食モードロ		腐	理** (現状水質が	
燃料プールー 減肉による耐 るいは漏えい		減肉による耐震強度低下あ るいは漏えいの可能性⊖	 ①酸素↔ (大気流入)↔ ② 過酸化水素↔ (放射線分解)↔ 	現状ほぼ中性↔	Cl (<10ppb) e	炭素鋼、ス テンレス 鋼、アルミ 合金、ジル コニウムロ	均一腐食。 ガルバニック腐 食 [。]	<u>遅</u> ↩ (現状水質が		遅↩ ・流動液膜に 度に佐存。	
原子炉建屋♀		事故時の負荷で劣化、ひび 割れが生じ、配管が腐食、耐 震強度が低下する可能性⇔	酸素。 (大気流入)。 マ	~30 ℃~ 中性~塩基性~	Cl (<10ppb) ↔	コンクリー ト鉄筋ロ	均一腐食↔	遅の		 ・英知事業で を参照↔ (約 0.02mm 	
	 喫水線より上 部ペ フランジシ ール部ペ 配管理気火 配管理気火 性 社 本 本		酸素。 (大気流入)。 。	~30·℃ ^µ 中性 ^µ	Cl (<10ppb) e	炭素鋼	均一腐食。	 流動波膜に 度に依存中 英知事業で を参照中 (約 0.02mm 		 気液界面に 英知事業で 照e (約 0.35mm 液動状況に 	
	喫水線近傍⇔	減肉による耐震強強度低下 あるいは貫通漏えいの可能 性 ^{el}	 ①酸素^ω (大気流入)^ω ②過酸化水素^ω (放射線分解)^ω 	~30·℃ ⁽⁾ 中性 ⁽⁾	Cl' (<10ppb) e	炭素鋼や	局部腐食中	 ・気液界面に ・英知事業で 照↔ (約 0.35mm 	面に :業で j 5mm	 ・英知事業で 照○ (約 0.2mm/ 	
	 水没部ロ ・シェル内壁ロ ・劣化塗装部ロ ・ベネロ 	 ・減肉による耐震強強度低 下あるいは貫通漏えいの可能性↔ ・燃料デプリ取り出し時の 負圧管理への影響↔ 	 ①酸素^ω (大気流入) ^ω ②過酸化水素^ω (放射線分解) ^ω 	~30.℃ 中性	Cl: (<10ppb) ↔ ホウ酸塩添加 時:B(OH)4(?) 影響評価要↔	炭素鋼⇔	均一腐食↩	 流動状況に 英知事業で 照(4) (約 0.2mm/) 	Ø	 ・濡れ砂のあ ・モックアッ 奨□ ・液動北沢に 	
原子炉格 納容器。 (PCV) ↔	サンドクッシ ョン部 ^の	格納容器からの漏えいによ り常時湿潤状態の可能性↔ 米国で 0.9mm/y の減肉事 例あり↔	 ①酸素 e (大気流入) e ② 過酸化水素 e (放射線分解) e 	~30·℃~ 中性~	Cl: (<10ppb?) ホウ酸塩添加 時:B(OH)4(?) 影響評価要e	炭素鋼の	均一腐食↔ すき間環境下の 腐食↔	・濡れ砂のあ ・モックアッ 奨⇔			
	1		2 1 1 March 187 - 1	 mm m2 	1 (1) (-1() 1) ···	1 KEN DER ARM 11	APT Mail discus	 Arrenal, J.D. 268 Str. 			

図 8 50℃,各相対湿度での ACM 電 流のオゾン濃度依存性

図9 腐食調査票

大気腐食における腐食速度を評価する際に用いられ る ACM (Atmospheric Corrosion Monitor) センサを 用いて評価した測定結果を**図8**に紹介する。この結 果より, 高湿度環境でオゾン濃度が高くなると, 炭 素鋼の腐食が加速されることが推定された。

③腐食調査票データベース

廃炉工程の進捗も考慮しつつ構造物を細分化して 調査及び解析を行い, 1F内の機器・構造材の潜在的 腐食影響について, 国内外の知見並びに文献より腐 食調査手法の抽出を行うと共に, 専門家との議論を 実施した。1Fの主要な設備を検討対象として, 腐食 に寄与する要因である, 酸素や過酸化水素等の腐食 を加速させる化学種, 温度や pH 等の水環境, 水中 の不純物や導電率等の水質,材料の種類,腐食形態(全 面的に均一に進む腐食か, それとも局部的な腐食か) 等, 様々な観点からの調査結果を, 図9の腐食調査 表としてまとめ, データベース化した^{4,15)}。

3. まとめ

1Fの放射線環境下での腐食を検討するために有 用な情報を,調査,取得し,放射線環境下での腐食 データベースとして取りまとめた。このデータベー スは,1Fでの廃炉工程における構造材の腐食影響 を評価,検討するうえでの活用が期待できる。

本報告は、文部科学省の「平成31年度国家課題

対応型研究開発推進事業 英知を結集した原子力科 学技術・人材育成推進事業 放射線環境下での腐食 データベースの構築」にて得られた成果の一部であ る。

参 考 文 献

- 1) Fukaya, Y., et al., Corrosion, 74, 577-587 (2018)
- 2) 廃炉・汚染水対策関係閣僚等会議,東京電力ホー ルディングス(株)福島第一原子力発電所の廃止 措置等に向けた中長期ロードマップ(案)(2019)
- E. Bjergbakke, et al., Radiochimica Acta, 48, 73-77 (1989)
- 4) 佐藤智徳, 他, JAEA-Review, 2021-001 (2021)
- 5) 佐藤智徳, 他, 材料と環境, 70, 457-461 (2021)
- 6)加藤千明,他,材料と環境,70,441-447 (2021)
- 7) Hata,K., et al., Nuclear Technology, 193, 434-443 (2016)
- Hata,K., et al., Journal of Nuclear Science and Technology, 53, 1183-1191 (2016)
- Hata,K., et al., Journal of Nuclear Science and Technology, 56, 842-850 (2019)
- 10) 井上博之, 他, 材料と環境, 70, 462-467 (2021)
- 11) 小澤正義,他,材料と環境,67,426-434 (2018)
- 12) 深谷祐一,他,第60回材料と環境討論会予稿集, A-107 (2013)
- 13) 阿部博志,他,材料と環境,70,436-440 (2021)
- 14) 秋山英二,他,材料と環境,70,448-456 (2021)
- 15) 鈴木俊一, 材料と環境, **70**, 487-490 (2021)

(*1日本原子力研究開発機構, *2量子科学技術研究 開発機構, *3大阪公立大学, *4東京工業大学, *5東北大学, *6東京大学)