RADIOISOTOPES

Volume 63, 2014

索引

RADIOISOTOPES 第63巻

事 項 索 引

物理学

	メスバウアースペクトロメトリーの基礎と応用
	メスバウアースペクトロメトリーを用いた新規導電ガラスの局所構造解析(連載講座)69
	量子ビームを用いたインビーム・メスバウアースペクトロメトリー (連載講座)103
	ダークマター(総説)151
	メスバウアースペクトロメトリーの基礎と応用
	電子論から見たメスバウアースペクトル(連載講座)163
	ダークエネルギー(総説)201
	メスバウアースペクトロメトリーの基礎と応用
	メスバウアースペクトロメトリーの地球化学・環境化学への応用
	―堆積物中の鉄の化学状態を指標とした堆積環境の推定―(連載講座)215
	ミニメスバウアー分光器と火星探査(連載講座)263
	放射光による核共鳴散乱―放射光メスバウアー分光と核共鳴振動分光―(連載講座)317
	中性子散乱による原子・分子のダイナミクスの観測
	III-1 細孔中の水のダイナミクス 過冷却水の相転移(連載講座) ························331
	III-1 細孔中の水のダイナミクス プロトン伝達(連載講座) · · · · · · · · · · · · · · · · · · ·
	メスバウアースペクトロメトリーの基礎と応用
	メスバウアー散乱法による固体表面分析の基礎と応用(連載講座)405
	光子・電子のモンテカルロ輸送計算コードの内容と利用(総説)443
	中性子散乱による原子・分子のダイナミクスの観測
	III-2 中性子非弾性散乱法による固体表面での分子分光(連載講座) ··················453
	III-3 金属中の水素のダイナミクス(連載講座)
	メスバウアースペクトロメトリーの基礎と応用
	鉄鋼の酸化生成物と防食皮膜のメスバウアー分析(連載講座)
放射	線物理
	光子・電子のモンテカルロ輸送計算コードの内容と利用(総説)443
	No.
化	学
	Jフバウマ、フペカしロJし11、の甘醂し広田
	メスバウアースペクトロメトリーの基礎と応用 メスバウアースペクトロメトリーを用いた新規導電ガラスの局所構造解析(連載講座)
	量子ビームを用いたインビーム・メスバウアースペクトロメトリー(連載講座)103
	電子論から見たメスバウアースペクトル(連載講座)
	メスバウアースペクトロメトリーの地球化学・環境化学への応用
	一堆積物中の鉄の化学状態を指標とした堆積環境の推定—(連載講座) ·······························215
	- 「年債物中の鉄の化子れ悪を指係とした年債環境の推定 - (建戦講座)
	マーススパリノーガル命と八生採軍(建戦神座) T-for-H 交換反応における各種ピリジン誘導体の速度論的反応解析と
	1-tor-n 交換反応における各種とリング誘導体の速度調的反応解析と 未知のニコチン酸誘導体の反応性推定への応用(原著)
	本知ツーコナマ敗砺等PVJ及心性推走、VVI心用(原省) 283

	メスハウドースペクトロメトリーの基礎と応用
	放射光による核共鳴散乱―放射光メスバウアー分光と核共鳴振動分光―(連載講座)317
	中性子散乱による原子・分子のダイナミクスの観測
	III-1 細孔中の水のダイナミクス 過冷却水の相転移(連載講座)
	III-1 細孔中の水のダイナミクス プロトン伝達 (連載講座)
	メスバウアースペクトロメトリーの基礎と応用
	— · · · · · · · · · · · · · · · · · · ·
	メスバウアー散乱法による固体表面分析の基礎と応用(連載講座) 405
	Evaluation of the Reactivity of L-tyrosine in the T-for-H Exchange Reaction
	at Low Temperature(英文 原著) ······429
	中性子散乱による原子・分子のダイナミクスの観測
	III-2 中性子非弾性散乱法による固体表面での分子分光(連載講座) ··················453
	III-3 金属中の水素のダイナミクス(連載講座) ·······489
	メスバウアースペクトロメトリーの基礎と応用
	鉄鋼の酸化生成物と防食皮膜のメスバウアー分析(連載講座) ··························531
	鉄鋼の販化生成物と的良及膜のメスパリテー分析 (連載講座) ························53
放射	化学
	サポナイトナノ粒子の破壊メカニズムに関する研究(原著)389
	液体シンチレーションカウンタによるベトナムウォッカ中の放射性炭素の直接測定(技術報告)395
	Evaluation of the Reactivity of L-tyrosine in the T-for-H Exchange Reaction
	at Low Temperature(英文 原著)
	A Mass-Production Process of a Highly Pure Medical Use 99mTc from Natural Isotopic
	Mo (n, γ) ⁹⁹ Mo without Using Uranium(英文 原著) ······501
エ	学
	T-for-H 交換反応における各種ピリジン誘導体の速度論的反応解析と
	未知のニコチン酸誘導体の反応性推定への応用(原著) 283
	サポナイトナノ粒子の破壊メカニズムに関する研究(原著)389
	光子・電子のモンテカルロ輸送計算コードの内容と利用(総説)443
農	学
	カキの果実及び葉中の放射性セシウムの濃度の比較
	-2011 年春~2013 年夏までの結果— (速報)
	放射線照射食品に誘導されるラジカルの Pulse-ESR と CW-ESR による
	緩和時間の検討(学生論文特集対象論文 ノート)13]
	リアルタイム RI イメージングシステムを用いたシロイヌナズナにおける ²⁸ Mg の定量解析(原著) …227
	放射性降下物に起因した果樹樹体内放射性核種の分布(第8報)
	一摘果果実を用いたモモ成熟果実の放射性セシウム濃度の推定について―(速報)293
放射	線生物学
	Protective Effect of Japanese Sake against Ionizing X-irradiation in Mice(英文 原著)
	放射性降下物に起因した果樹樹体内放射性核種の分布(第8報)
	一摘果果実を用いたモモ成熟果実の放射性セシウム濃度の推定について― (速報)293
	TEACHER TO CONTRACT TO THE CON

医学・核医学・分子イメージング

全国を対象とした「核医学検査における安全管理等に関するアンケート調査報告	PET/MRI 装置による臨床への応用(総説)
	第 10 報(資料)
	臨床研修医への放射線教育から見えてきたもの―放射線の理解とリスク認知度の解析―(資料)435
	A Mass-Production Process of a Highly Pure Medical Use 99mTc from Natural Isotopic
	$\mathrm{Mo}(\mathrm{n},\gamma)$ $^{\mathrm{ss}}\mathrm{Mo}$ without Using Uranium(英文 原著)501
薬	学
	ESR スピントラップ法による放射線照射漢方エキス剤の
	ラジカル捕捉活性評価(学生論文特集対象論文 原著)119
	安定ヨウ素剤投与時期の ¹³¹ I 甲状腺摂取率抑制効果の評価
	〜体内動態モデルによる日本人を対象とした計算〜 (原著) ······461
放射線	測定・装置
	液体シンチレーション計測法によるガソリン中
	エチルターシャリーブチルエーテル (ETBE) 濃度の定量における脱色の効果 (速報)139
	内部被ばくの評価 (2) バイオアッセイ法 (講座)
	内部被ばくの評価 (3) 空気中放射能濃度測定法 (講座)257
	液体シンチレーションカウンタによるベトナムウォッカ中の放射性炭素の直接測定(技術報告)399 福島周辺における空間線量率の測定と評価
	I 連載講座のねらいと概要 (連載講座)
	II 放射線防護で用いられる線量の意味と特徴 (連載講座)
	廃棄物ガンマ線分析システムによるウラン 238 定量結果の検証(技術報告) ······559
	福島周辺における空間線量率の測定と評価
	III 環境 γ 線の特徴と被ばく線量との関係(連載講座) 585
放射線	利用機器
	PET/MRI 装置による臨床への応用 (総説)
	メスバウアースペクトロメトリーの基礎と応用
	放射光による核共鳴散乱―放射光メスバウアー分光と核共鳴振動分光―(連載講座)317

分 析

ESR スピントラップ法による放射線照射漢方エキス剤の
ラジカル捕捉活性評価(学生論文特集対象論文 原著)119
放射線照射食品に誘導されるラジカルの Pulse-ESR と CW-ESR による
緩和時間の検討(学生論文特集対象論文 ノート)131
メスバウアースペクトロメトリーの基礎と応用
ミニメスバウアー分光器と火星探査(連載講座)263
T-for-H 交換反応における各種ピリジン誘導体の速度論的反応解析と
未知のニコチン酸誘導体の反応性推定への応用(原著)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
メスバウアースペクトロメトリーの基礎と応用
放射光による核共鳴散乱―放射光メスバウアー分光と核共鳴振動分光―(連載講座)317
Evaluation of the Reactivity of L-tyrosine in the T-for-H Exchange Reaction
at Low Temperature(英文 原著) ·······429
A Mass-Production Process of a Highly Pure Medical Use 99mTc from Natural Isotopic
Mo(n, γ) ⁹⁹ Mo without Using Uranium(英文 原著) ····································
環境・環境放射能
千葉県立柏の葉公園内のアスレチックスペース「冒険のトリデ」における除染効果の検証(資料) …13
千葉県営住宅敷地内の児童公園における除染効果の検証(資料) ······31
千葉県立柏の葉公園内の「日本庭園」における除染効果の検証(資料) ··············45
降水、擬似浸透水、地下水のトリチウム濃度の比較(原著)79
カキの果実及び葉中の放射性セシウムの濃度の比較
液体シンチレーション計測法によるガソリン中
エチルターシャリーブチルエーテル (ETBE) 濃度の定量における脱色の効果 (速報)139
Atmospheric Concentrations of ²¹⁰ Pb and ⁷ Be Observed in Okinawa Islands(英文 原著) ······175
沖縄県那覇市で採取されたエアロゾル中硫酸イオン濃度とその硫黄同位体比(ノート)183
遠州灘における砂浜の線量率(資料) 191
メスバウアースペクトロメトリーの基礎と応用
ミニメスバウアー分光器と火星探査(連載講座)263
放射性降下物に起因した果樹樹体内放射性核種の分布(第8報)
―摘果果実を用いたモモ成熟果実の放射性セシウム濃度の推定について―(速報)293
東京電力福島第一原子力発電所事故で放出された放射性物質の移行と蓄積(総説)299
液体シンチレーションカウンタによるベトナムウォッカ中の放射性炭素の直接測定(技術報告)399
霧島山の湧水中ラドン濃度とその季節変化について(資料) ······471
芝地における放射性セシウムの蓄積状況と経時変化(資料) 481
福島周辺における空間線量率の測定と評価
I 連載講座のねらいと概要(連載講座) ·······515
II 放射線防護で用いられる線量の意味と特徴(連載講座)519
III 環境 γ 線の特徴と被ばく線量との関係 (連載講座) ·······585

照射効果

	放射線照射食品に誘導されるラジカルの Pulse-ESR と CW-ESR による 緩和時間の検討(学生論文特集対象論文 ノート) · · · · · · · · · · · · · · · · · · ·
安定同	位体
	安定同位体利用技術 安定同位体呼気試験の消化器疾患診断と治療効果への応用 (総説)567
放射線	防護
	Protective Effect of Japanese Sake against Ionizing X-irradiation in Mice (英文 原著) 1 内部被ばくの評価 (1) 体外計測法による評価 (講座) 239 内部被ばくの評価 (2) バイオアッセイ法 (講座) 249 内部被ばくの評価 (3) 空気中放射能濃度測定法 (講座) 257 安定ヨウ素剤投与時期の ¹³¹ I 甲状腺摂取率抑制効果の評価 ~体内動態モデルによる日本人を対象とした計算~ (原著) 461
その他	(放射線教育) 「高校生を対象とした放射線等に関する課題研究活動」支援事業の意義と今後の課題(資料) … 93 中学生向け放射線教育のパンフレットの出版(資料) … 145 自然放射能線源を用いて行う放射線計数の統計的変動を理解するための測定実習(技術報告) … 345 液体シンチレーションカウンタによるベトナムウォッカ中の放射性炭素の直接測定(技術報告) … 399 臨床研修医への放射線教育から見えてきたもの — 放射線の理解とリスク認知度の解析 — (資料) … 435
総	説 PET/MRI 装置による臨床への応用
講	座
	内部被ばくの評価(1) 体外計測法による評価 239 内部被ばくの評価(2) バイオアッセイ法 249 内部被ばくの評価(3) 空気中放射能濃度測定法 257

連載講座

メスバウアースペクトロメトリーの基礎と応用	
メスバウアースペクトロメトリーを用いた新規導電ガラスの局所構造解析	69
量子ビームを用いたインビーム・メスバウアースペクトロメトリー	103
電子論から見たメスバウアースペクトル	163
メスバウアースペクトロメトリーの地球化学・環境化学への応用	
一堆積物中の鉄の化学状態を指標とした堆積環境の推定―	
ミニメスバウアー分光器と火星探査	
放射光による核共鳴散乱 一放射光メスバウアー分光と核共鳴振動分光—	317
メスバウアー散乱法による固体表面分析の基礎と応用	
鉄鋼の酸化生成物と防食皮膜のメスバウアー分析	531
- - - - - - - - - - - - - - - - - - -	
中性子散乱による原子・分子のダイナミクスの観測	001
Ⅲ-1 細孔中の水のダイナミクス 過冷却水の相転移	
III-1 細孔中の水のダイナミクス プロトン伝達	
III-2 中性子非弾性散乱法による固体表面での分子分光	
III-3 金属中の水素のダイナミクス	489
福島周辺における空間線量率の測定と評価	
I 連載講座のねらいと概要	
	519
III 環境γ線の特徴と被ばく線量との関係 ····································	

RADIOISOTOPES Vol. 63

CONTENTS*

No.	1
	Article
	Protective Effect of Japanese Sake against Ionizing X-irradiation in Mice
No.	2
	Article
	Comparison of Tritium Concentrations in Rainwater, Simulated Infiltrating Water, and Groundwater†
	Letter
	Concentration Change of Radiocaesium in Persimmon Leaves and Fruits
	—Observation Resutls in 2011 Spring – 2013 Summer—†
No.	
	Article Macaurament of Radical Seavenging Activity of Irradicted Kompa
	Measurement of Radical Scavenging Activity of Irradiated Kampo Extracts using ESR Spin-trap Method†Yui Ohta, Shoei Kawamura,
	Masahiro Kikuchi, Yasuhiko Kobayashi, Mitsuko Ukai and Hideo Nakamura · · · 119
	Note
	Studies on the Relaxation Time of Radicals in Irradiated Foods
	using Pulse-ESR and CW-ESR†Keigo KISHITA, Shoei KAWAMURA, Hiromi KAMEYA,
	Hideo Nakamura, Masahiro Kikuchi, Yasuhiko Kobayashi and Mitsuko Ukai · · · 131
	Letter
	Effect of Decolorization on the Determination of
	ETBE Contents in Gasoline by Liquid Scintillation Counting [†]
	Toshiyasu Wagakawa, Shunji Tunoki ahu wasaaki Saito 135
No.	4
	Article
	Atmospheric Concentrations of ²¹⁰ Pb and ⁷ Be Observed in Okinawa Islands····································
	Fumiya Nakaema, Yoshitaka Zamami and Takemitsu Arakaki · · · 175
	Note
	Sulfur Isotope Ratio of Sulfate in Aerosol Samples Collected
	at Naha City, Okinawa, Japan † · · · · · · · · · · · · · · Sachie Tadano, Naofumi Akata, Yutaka Kanai, Akira Ueda and Fumitaka Yanagisawa · · · 183

^{*}Here are included Articles, Notes, Technical Reports and Letters only.

[†] In Japanese

No.	5
	Article
	Quantitative Analysis of ²⁸ Mg in <i>Arabidopsis</i> using Real-time Radioisotope
	Imaging System (RRIS) †Ryohei Sugita,
	Natsuko I. Kobayashi, Takayuki Saito, Atsushi Hirose, Ren Iwata,
	Keitaro Tanoi and Tomoko M. Nakanishi · · · 227
No.	6
	Article
	Kinetic Reaction Analysis of the Pyridine Derivatives
	in the T-for-H Exchage Reaction and the Application to the Estimation
	of the Reactivity of Unknown Nicotinic Acid Derivatives †
	Jun Aotsuka, Wang Ying, Takayuki Sato, Noriaki Kataoka,
	Hiroshi Imalzumi and Naoki Kano · · · 283
	THEOSHE IMAIZUME and INDOKE IXANO 200
	Letter
	Radioactivity Distribution in Each Part of the Fruit Trees
	from Radioactive Fall Out (VIII)—Prediction of Peach Fruit
	Radiocaesium Concentration by Thinning Fruits—†
	Daisuke Takata, Mamoru Sato, Kazuhiro Abe, Natsuko I. Kobayashi,
	Keitaro T _{ANOI} and Eriko Y _{ASUNAGA} ··· 293
N.T	7
No.	
	Technical Report
	Radiation Measurement Practice for Understanding Statistical Fluctuation
	of Radiation Count Using Natural Radiation Sources †Takao Kawano 345
No.	
	Article
	Study of Decomposition Mechanism
	for Inorganic-Layered Saponite Nanoparticle†
	Kiminori Sato, Koichiro Fujiмото and Kazuhiko Fujiwara · · · 389
	Technical Report
	Direct Measurement of Radioactive Carbon in Vietnamese Vodkas
	by Liquid Scintillation Counter [†]
No.	
	Article
	Evaluation of the Reactivity of L-tyrosine
	in the T-for-H Exchange Reaction at Low Temperature ·······Noriaki KATAOKA,
	Naoyuki Kanda, Hiroshi Imaizumi and Naoki Kano · · · 429
No.	10
	Article
	Evaluation of Relationship between Inhalation of ¹³¹ I Thyroid Uptake
	and Administration Time of Stable Iodine Tablets
	~Calculation for Japanese by Using Biokinetic Models~†

o. 11
Article
A Mass-Production Process of a Highly Pure Medical Use 99mTc
from Natural Isotopic Mo (n, γ) 99 Mo without Using Uranium \cdots
Yuko Komatsuzaki, Yumi Suzuki, Atsushi Tanaka, Kiyoko Kurosawa,
Tomoya Uehara, Yusuke Higaki, Hirofumi Hanaoka and Yasushi Arano · · · 501
o. 12
Technical Report
Verification of Uranium 238 Quantity Calculated Using Waste Assay Systems †
Masaki Naganuma and Noritake Sugitsue · · · 559