

^{I連載]} BNCTの将来展望

1. はじめに

本誌 2018 年 2 月号では,BNCT が今日まで発展 してきた経緯について述べた。世界,特に米国での 研究が頓挫している中で,基礎と臨床の両面で研究 実績を積み上げ,世界の過半の臨床 BNCT を行う 等世界の研究を牽引してきた我が国で次に進むべき 途が,本療法の承認医療実現であることはごく自然 な成り行きであった。本号では,承認医療の実現に 向けた BNCT 用加速器中性子照射システムの開発 について解説し,BNCT の将来展望,そしてその為 の研究課題について述べる。

2.加速器 BNCT システムの開発

脳腫瘍と頭頸部癌の成果によって,BNCT を公的 承認医療にすべきとの機運が高まった。当初,研究 炉を医療機器として承認を得るのは流石に難しいだ ろうから,熱・熱外中性子の照射設備に限定して承 認を得る可能性を探ったが,我が国では全くその可 能性が無いことが明らかになり,BNCT専用の加速 器中性子照射システムを開発することになった。

中性子の発生には一般に陽子を加速し種々の標的 金属に衝突させる。陽子を加速する加速器,標的金 属,陽子エネルギー・電流値が相互に絡む要素であ る(図1)。我が国では様々なプロジェクトが計画 中あるいは進行中である(表1)。ただ,患者を対 象にした臨床試験まで進んでいるのは,世界で唯一, 京都大学原子炉実験所の研究グループと住友重機械 工業(株)が共同開発したシステムのみで,現在,第 田相治験(医療機器とホウ素薬剤の承認を得る)の 患者登録が最終段階にある。こうした現状に鑑み, 以下,このシステムついて他の計画とも比較しなが ら紹介する。加速器はサイクロトロン,陽子エネル 小野 公二 Ono Koji

図1 加速器中性子源の係る3要素

表 1	日本で開発済み及び開発中の BNCT	用加速器中性子测

開発の段階	研究機関・医療機関	加速器の種類	陽子MeV (電流mA)	標的
臨床試験中	京都大学原子炉実験所	サイクロトロン	30 (~2)	Be
臨床試験中	南東北BNCT研究センター	サイクロトロン	30 (~2)	Be
臨床試験待機中	関西BNCT共同医療センター	サイクロトロン	30 (~2)	Be
非臨床試験準備中	国立がん研究センター中央病院	直線加速器	2.5 (12)	固体 ⁷ Li
非臨床試験準備中	筑波大学等	直線加速器	8 (1.4)	Be
建設中	江戸川病院BNCTセンター	直線加速器	2.5 (12)	固体 ⁷ Li
開発中	名古屋大学	静電加速器	2.8 (15)	固体 ⁷ Li
			2018	年2日現在

ギー30 MeV, 電流量 (~2 mA), 標的はベリリウム, 減速体系と照射系も含め臨床現場での設置に問題な いサイズでもある (図 2)^{1,2)}。

陽子線治療の加速器と比べると,加速エネルギー は低いものの,電流量が数万倍以上大きいので標的 部分で発生する熱量は膨大である。対応には融点が 高く熱伝導度の大きい金属の利用が安全である。更 に,陽子エネルギーによっては金属標的中で陽子が 停止,水素ガスとなって蓄積して標的を急速に脆弱 化,破壊する(ブリスタリング)。そこで,筆者ら はこれらの問題を同時に解決する為に,標的金属に 融点の高いベリリウムと陽子エネルギーとして中性 *****

図2 BNCT 用サイクロトロン中性子照射システム

子発生効率の高い 30 MeV を選択した。30 MeV 陽 子のベリリウム中の飛程は 5.8 mm であるので、標 的厚を 5.5 mm とした。5.5 mm 厚のベリリウムは十 分な強度を持ち、強度を補強するための支持金属を 後背に接合する必要が無く、標的を直接冷却するこ とが可能である。陽子はベリリウム標的を貫通して 冷却水中に落ちるので、ブリスタリングを簡単かつ 完全に回避できた。ベリリウム標的でも陽子のエネ ルギーが低い場合、ベリリウムのブリスタリングを 回避するには薄くする必要があり、強度補強の支持 金属が必要で、支持金属のブリスタリングを回避する には,水素吸蔵金属をも接合する必要が生じる。当然, 標的の寿命も短くならざるを得ない。筆者らのシス テムでは1mA 運転で得られる熱外中性子束密度が、 1.22 × 10°ncm²s⁻¹で研究炉の1.88 倍, エネルギース ペクトルは高エネルギー側にシフトしていた(図3)。

このエネルギーシフトは、表面線量が増加するマ イナスの一方で、深部の熱中性子分布の改善に寄与 している。深部での熱中性子束密度は、KUR の2倍 である。エネルギースペクトルに応じて、当然、 RBE の変化が予想された。複数の細胞株で調べる と、RBE は2.4~2.6で、KUR の3.0よりも小さくなっ た。中性子エネルギーに応じて、水素原子核との衝 突で叩き出される陽子のエネルギーが高くなり、逆 に LET は低く RBE も小さくなった。これは予想通 りであった(図3)。

"B 薬剤との併用の効果を実験的に確認した後の 2012 年から再発悪性神経膠腫を,続いて再発ある いは局所進行の手術不能頭頸部癌を対象に第 I 相治 験を開始した。本稿を執筆中の現在,両腫瘍に対す る第Ⅱ相治験の患者登録が完了間際である。脳腫瘍

図3 中性子のエネルギー分布の比較と RBE への影響

では効果の確認に BNCT 終了後1年を要するので, 承認申請には未だ時間が掛る予定である。

3.今後の BNCT 発展のための課題

BNCT は高度に学際的な手法であるので,様々な 視点から「夢」を含めて研究課題を論じると際限が ない。そこで,ホウ素薬剤 BPA が今後も臨床 BNCT の中心薬剤であり続けるであろうとの近未来 の予想を基本的な前提とした上での研究課題につい て述べることとする。

 ①腫瘍と正常組織のホウ素薬剤(BPA)の動態の高 精度予測

BNCT ではホウ素薬剤が腫瘍にどの程度選択的に 集積するかが成否を決める重要な要素である。BPA は陽電子放出核種 ^IF でもって標識でき、PET でそ の集積を画像化し、定量できる。集積比や濃度が、 臨床例では許容の誤差で得られ、また実験腫瘍では 十分に高い精度で、得られることが報告されてい る^{3,4)}。しかし,¹⁸FBPA PET は未承認の検査である。 ¹⁸FBPA PET が事前検査として使えるなら、適応を PET のデータに基づいて決め得るので、がん種毎に 臨床試験を行う必要が無くなる可能性も生まれる。 ¹⁸FBPA PET の承認が BNCT の飛躍・発展にとって 不可欠である所以である。然りながらホウ素濃度や 集積比を放射線治療に求められる精度で得るには. ¹⁸FBPA PET の高度化を更に進める必要がある。BPA 投与後や投与中のホウ素濃度の経時変化は腫瘍に よって異なると考えられる。終了と共に血中濃度に 並行して低下する場合もあれば暫く維持されるもの もある。正常組織も同様である 5.60。これらの情報 の把握には, Dynamic Study が不可欠である⁷。現在,

臨床研究や試験では多くの場合,照射中もホウ素薬 剤 BPA の投与を継続し血中濃度を一定に保ちつつ 照射を行っているが,最大の選択的効果を得る中性 子照射のタイミングは患者の腫瘍毎に異なる可能性 があり,こうした条件を患者の個々の腫瘍で決めな ければならない。ただ,最大の選択的効果を与え得 る時間幅は小さいことも予想される。これに対応す るには照射する中性子の束密度(ncm⁻²s⁻¹)が大きく なければならず,加速器中性子源の高強度化の課題 とも繋がる。

更にヒト腫瘍では実験腫瘍と異なり一般に間質成 分が多く、その多寡は腫瘍によって可成り異なる。 PETで計測できる濃度はあくまでマクロ濃度であり、 BPAは間質成分には集積しないので間質が多い腫瘍 では腫瘍細胞における BPA 濃度を過少評価し、適応 症例を見落とす可能性がある。この点を解決し腫瘍 での濃度予測の高精度化を図る必要がある。 ②中性子源性能の高度化

中性子源開発では得られる中性子束密度を高める ことが求められる。現在の2倍程度に高まると治療 は大きく変わる。我々は加速器を1mA で運転して いるが、性能としては2mAでの運転が可能で確認 済みでもある。標的に陽子を照射して中性子を発生 させる運転では1.5 mA での試験運転の実績がある。 悪性神経膠腫の場合、現行では最長45分程度の照 射時間が必要だが、2mAで運転すれば照射時間は 半減し、一度のホウ素薬剤の投与で連続した2方向 からの照射も可能となる。脳腫瘍を例に考えると 2方向照射によって腫瘍の腫瘍制御の可否に関わる 最低線量を大幅に引き上げる,あるいは正常脳の線 量を大幅に下げることが可能で、更に安全性の高い BNCT が実現する (図4)。また、前述の最適タイ ミングでの中性子照射が期待できる。治験が終了す れば性能の向上に挑戦する計画である。

③正常組織に対するホウ素薬剤の CBE 値の決定

高 LET 粒子を放出する BNCT では,正常組織に 対する影響を定量的に評価するために,ホウ素線量 を X 線等価線量へ換算する係数である CBE 値(薬 剤のミクロ分布に支配される実効 RBE)をホウ素 薬剤毎,正常組織毎に把握することが不可欠である。 しかし,既に使われている BPA や BSH においても CBE 値が未確定の組織が多い(表 2)⁸。

CBE 値の確定していない臓器・組織の癌に不用

⊠ 4 DVH (Dose Volume Histogram)

サイクロトロン中性子での1門照射 VS.2 門照射

表 2 中性子の RBE と BPA 及び BSH の諸組織に対する CBE 値

Radiation	Tumor	Brain	Skin	Mucosa	Lung	Liver
Thermal N.	3.0	3.0	3.0	3.0	3.0	3.0
Epithermal N.	3.0	3.0	3.0	3.0	3.0	3.0
¹⁰ B(n,α) ⁷ Li BPA BSH	3.8 2.5	0.32 + N/Bx1.65 0.36	2.5 (0.73) 0.8 (0.86)	4.9 0.3	0.32 + N/Bx1.80 ?	4.3 (?) 0.9 (?)
γ-ray	1.0	1.0	1.0	1.0	1.0	1.0

 $(\,\cdot\,\,\cdot\,)$: CBE factors for late response The formulas were published in JRR 57(S1), i83-i89,2016

意に適応拡大を図ることはできないので,実験による CBE 値の確定は重要かつ喫緊の課題である。筋肉,骨,腸管,肝の慢性障害,腎等で CBE 値が未確定である。比較的研究し易い急性障害や臓器もあれば,慢性障害のみの臓器もあって,相当な困難を 覚悟しなければならないと考えている。

④新規ホウ素薬剤の開発

この課題は①~③とは異なり相当程度の長期的視 点での課題になる。現在のホウ素薬剤(BSH, BPA)よりも高い腫瘍:正常組織(血液)比でかつ 高い濃度で腫瘍に集積する新たなホウ素薬剤を開発 する課題である。この場合のホウ素薬剤に求められ る重要な要件に,腫瘍中で均一に分布する性質があ る。放出粒子の飛程は極短いので,不均一な分布は 線量分布に極端な不均一を生み,腫瘍再発の原因と なるからである。こうした意味で,将来のBNCT 発展にホウ素化学者,薬学者の果たすべき役割は極 めて大きい。様々なホウ素製剤が提案されているが, 多くが集積量の検討で終わっており,中性子照射に よる効果の厳密な検証に到っていない^{9,17)}。まして や,正常組織に対するBNCT 影響が如何ほどかに ついては研究されていない。BNCT 基礎研究の拠点

でもある京都大学原子炉実験所の研究炉(KUR) がウラン燃料の低濃縮化,そして東京電力福島第一 原子力発電所の事故後の新規制基準への対応の為, 最近10年間でそれぞれ4年間と3年間強の運転停 止を余儀なくされた影響は大きかった。

4. まとめ

レントゲン博士による X 線発見に始まったがん の放射線療法は20世紀に大きく発展し、今やX線 や粒子線(陽子線,重粒子線)による治療技術は概 ね確立されたと見なし得る。そこでの到達点は以下 の3点に纏めることできる。第一は、ある程度限局 したがんはそこに放射線を集中照射することによっ て完全に制御でき, 有害事象も回避できることが分 かったことである。これを実証したのが密封小線源 治療であり、外照射で実現する技術として、術中照 射, 定位照射, 原体照射, IMRT, そして陽子線治療, 重粒子線治療が開発された。第二は、高LET 放射 線が X 線低感受性腫瘍に確かに有効であることが 重粒子線治療で実証されたことである。第三は第一 に関係するが、生理的移動を伴う臓器のがんを追尾 して照射する技術が開発されたことである。一方, これまでの解説から分かるように、これらの到達点 のすべてが BNCT には高精度化されて自ずから備 わっている。今後のより優れたホウ素薬剤の開発は これらを更に高度化するはずである。BNCT はその 意味で、その発展に限りが無い。

参 考 文 献

- Tanaka H1., *et al.*, Appl Improvement of dose distribution in phantom by using epithermal neutron source based on the Be (p,n) reaction using a 30 MeV proton cyclotron accelerator. *Radiat Isot.* 2009;67 (7-8 Suppl):S258-61.
- 2) Tanaka H1., *et al.*, Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS). *Appl Radiat Isot.* **69** (12):1642-5 (2011)
- Y. Imahori, *et al.*, Advances in Brief Positron emission tomography based boron neutron capture therapy using boronophenylalanine for high grade gliomas : Part-I *Clinical Cancer Res.* 4, 1825-1832 (1998)
- 4) Hanaoka K., *et al.*, FBPA PET in boron neutron capture therapy for cancer: prediction of (10) B concentration in the tumor and normal tissue in a rat xenograft model. *EJNMMI Res.* 4 (1):70 (2014)
- 5) Fukuda H1., et al., Pharmacokinetics of 10B-p-

boronophenylalanine in tumours, skin and blood of melanomapatients: a study of boron neutron capture therapy for malignant melanoma. *Melanoma Res.*,**9** (1) :75-83 (1999)

- 6) Y. Imahori, *et al.*, Advances in Brief Positron emission tomography based boron neutron capture therapy using boronophenylalanine for high grade gliomas : Part-II *Clinical Cancer Res.* **4**, 1833-1841, 1998.
- 7) Morita T., *et al.*, Dynamic changes in 18F-borono-Lphenylalanine uptake in unresectable, advanced, or recurrent squamous cell carcinoma of the head and neck and malignant melanoma during boron neutron capture therapy patient selection. *Radiat Oncol.*, **13** (1):4 (2018)
- Ono K. An analysis of the structure of the compound biological effectiveness factor. *J Radiat Res.*, 57, Suppl 1:i83-i89 (2016)
- 9) Yanagie H., *et al.*, Selective boron delivery by intraarterial injection of BSH-WOW emulsion in hepatic cancer model for neutron capture therapy.nBr *J Radiol*.
 90 (1074):20170004 (2017)
- Mi P., *et al.*, Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors. *J. Control Release.*, 254:1-9 (2017)
- 11) Futamura G., *et al.*, Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma. *Radiat Oncol.* 12 (1):26 (2017)
- 12) Ueda M., *et al.*, Lipid-membrane-incorporated arylboronate esters as agents for boron neutron capture therapy. *Org Biomol Chem.* 15 (7):1565-1569 (2017)
- 13) Gao Z., et al., Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials. 104:201-12 (2016)
- 14) Nakamura H., *et al.*, Antitumor effect of boron nitride nanotubes in combination with thermal neutron irradiation on BNCT. *Bioorg Med Chem Lett.*, 25 (2):172-4 (2015)
- 15) Hattori Y., *et al.*, Synthesis and *in vitro* evaluation of thiododecaborated *a*, *a*- cycloalkylamino acids for the treatment of malignant brain tumors by boron neutron capture therapy. *Amino Acids*. **46** (12):2715-20 (2014)
- 16) Michiue H., et al., The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials. 35 (10):3396-405 (2014)
- 17) Koganei, *et al.*, Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers. *Bioconjug Chem.*, 24 (1):124-32 (2013)

(大阪医科大学 関西 BNCT 共同医療センター)