

放射線施設における 重量コンクリートの利用例

乗物 丈巳 Norimono Takemi 鈴木 正樹 Suzuki Masaki 大二郎 Tsuji Daijiro

1. はじめに

原子力関連施設や放射線施設において放射線の遮 蔽体として一般的にコンクリートが使用される。普 通コンクリートより密度が大きい重量コンクリート を使用することにより、γ線に対する遮蔽性能を高 め、遮蔽体の断面寸法を普通コンクリートより小さ くすることができ、建築空間の有効活用が図られる。 コンクリートの密度を高めるためには、天然にある 鉄鉱石等、密度の大きな骨材を使用する。しかしな がら、特殊な骨材を使用するため、施工可能で安定 した品質の重量コンクリートを製造し施工するには 多くの課題がある^{1,2}。

弊社では,**表1**に示すように,1960年の旧日本原 子力研究所(現 日本原子力研究開発機構)の東海

No	工事名称	施工年	乾燥密度 (g/cm ³)	打設量 (m ³)
1	JAEA 東海ホットラボ	1960	3.70 以上	401
2	核燃料サイクル機構 CPF	1979	3.35 以上	700
3	JAEA JRR-3	1987	3.40 以上	350
4	理研 リングサイクロトロ ン	1988	3.50 以上	15
5	JAEA NUCEF	1991	3.50 以上	180
6	理研 Spring-8	1995	3.60 以上	11
7	理研 RIBF	2003	3.30 以上	170

表1	施工実績一	覧表	(代表施設と施工年)

JAEA:国立研究開発法人日本原子力研究開発機構 理研:国立研究開発法人理化学研究所 ホットラボをはじめ,国内初の研究用原子炉である JRR-3や、ニホニウムを発見した理化学研究所の RIBF施設など,国内の原子力関連施設や研究施設の 放射線を遮蔽する材料として重量コンクリートを採 用した実績がある。本報では「(公社)日本アイソト ープ協会 川崎技術開発センター工事(図1)」(以 下 RI 川崎)において,遮蔽体として施工した重量コ ンクリートについて紹介する。

2. 重量骨材と調合

计

コンクリートは、セメント、水、骨材(細骨材と 粗骨材)及び化学混和剤で構成され、今回密度の大 きな重量骨材として、細骨材は、製鉄所で発生する 砂状の酸化鉄 [酸化鉄粉]を、粗骨材は、鉄の原材 料となる鉄鉱石(南アフリカ原産)[赤鉄鉱]を使 用した。図2に使用した骨材の写真を示す。

普通コンクリートに使用する通常骨材の密度が2.5
 ~2.8 g/cm³ 程度に対して,重量コンクリートで使用する重量骨材の密度は4.7~5.0 g/cm³ 程度である(表 2)。

図1 日本アイソトープ協会 川崎技術開発センター

重量コンクリートは通常の骨材と比べて,密度差 や粒度分布に違いがあるため,コンクリート調合の バランスが難しい。硬化前のフレッシュコンクリー トの状態で,施工のしやすさを確保するための流動 性や,材料分離が生じないように適度な粘性と均一 性,硬化後の強度発現性,そして経済性を考慮した 調合バランスが重要である。様々な調合について試 し練りを実施し,所要の性能を満足することができ たコンクリート調合を**表3**に示す。

この調合は,遮蔽に必要な密度を有しながらポン プ車を使用したコンクリートの圧送に必要な流動性 (スランプ)を保持し,かつ材料分離しにくいように, 単位水量の設定や細骨材の構成比などを工夫してい る。図3に硬化前コンクリートのスランプ試験状況 を示す。

粗骨材:赤鉄鉱

細骨材:酸化鉄粉図2 使用した重量骨材

表2 骨材の性質

	材 料	種類	産 地	骨材の密度 (g/cm ³)	吸水率 (%)
	細骨材	酸化鉄粉	工業製品	5.0	1.6
粗骨材		赤鉄鉱	南アフリカ産	4.7	0.9

表3 重量コンクリート調合表※

※特許出願済

単位量(kg/m³)						
	水	おメント 細骨材		材	粗骨材	調合上の単位 容積 督 量
			酸化鉄粉	山砂	赤鉄鉱	LIKAT
	142	356	960	403	1823	3.68 (t/m ³)

図3 硬化前コンクリート (スランプ試験)

また遮蔽性能に求められる最も重要な,硬化コン クリートの気乾単位容積質量(自然乾燥により大気 中の湿度と平衡を保つ状態での単位容積質量)が 3.50 t/m³以上あることを確認した。表4に硬化前コ ンクリートの試験結果を示す。図4はコンクリート 材齢0日から28日間の気乾単位容積質量の測定結 果を示す。

3. 遮蔽性能試験と解析

重量コンクリートの γ 線遮蔽性能試験と解析を実施した。試験は、 γ 線源と γ 線計測器(検出器)の間に重量コンクリート試験体を置き、厚さを5 cm~20 cm まで5 cm 間隔で変化させた場合の空間線量率を測定した。 γ 線源は、Co-60 (10 MBq)を使用した。

表5に示すように寸法20 cm × 20 cm × 厚さ5 cm の2種類の試験体を作製し,遮蔽性能を比較するために,同一サイズの普通コンクリート試験体も作製した。**表6**に重量コンクリート試験体の元素組成を示す。

図5に示すように,γ線に対する遮蔽性能試験は, 床から1.2mの高さでγ線源と検出器の測定中心ま での距離を35 cmと固定し,その間に試料がない場

表4 硬化前コンクリート試験結果

試験項目	目標値 (規格値)	試験結果
単位容積質量	3.50 t/m ³ 以上	3.75 t/m ³
スランプ	18.0 cm 以上	18.5 cm
スランプフロー		$32.0 \times 30.5 \text{ cm}$
材料分離	無し	無し
空気量	2.0 % 以下	1.9 %
塩化物含有量	0.30 kg/m³ 以下	0.03 kg/m ³

図4 気乾単位容積質量測定結果

合とある場合について,空間線量率をそれぞれ10回 測定した平均値より透過率を求めた。透過率の算出 にあたり,計測した空間線量率からバックグラウン ド値を差し引いて算出している。γ線源は鉛コリメ ータを有する Co-60線源(10 MBq)とし,測定器は 応用光研工業㈱製 S-3073(1インチφ NaIシンチレ ーション検出器)を用いた。また実験値との整合性 を評価するため,粒子・重イオン汎用モンテカルロ 輸送コード(遮蔽計算コード)である「PHITS」³を用 いて重量コンクリートと普通コンクリートの遮蔽性 能を解析し,γ線遮蔽試験結果との整合性を評価し た。

γ線に対する透過試験結果(実験値,解析値)を 表7に示す。試験の結果,実験値と解析値がよく一 致しており,それぞれの材料の遮蔽性能の妥当性が 確認された(図6参照)。また,実験値の透過率が 1/10となる材料厚に対して,普通コンクリートの材 料厚に規格化した遮蔽性能を比較した結果,重量コ ンクリートは,普通コンクリートに比べおおよそ 1.6倍の遮蔽性能があることを確認した(図7参照)。 遮蔽体の等価厚さは,適用する密度を放射線遮蔽計 算マニュアルで一般的に使用しているコンクリート

表5 試験体の情報

試験体	形状 [cm]	試験体数	計測密度 [g/cm ³]
重量コンクリート	$20 \times 20 \times 5$	4	3.86
普通コンクリート	$20 \times 20 \times 5$	4	2.29

表6 重量コンクリートの元素組成

		ſ	と学成分%	6		
SiO2	Al2O2	Fe2O3	FeO	Fe	CaO	その他
10.8	1.5	58.5	8.7	6.6	5.4	8.5

図 5 γ線遮蔽性能試験状況

密度(2.10 g/cm³)で除したものにコンクリートの 厚さを掛ける補正式⁴⁾から求まる。本実験結果は, 補正式で用いる密度比と同程度の値となった。

4. 温度応力解析

コンクリートは,部材断面が大きくなる(マスコ ンクリート)と,セメントと水の化学反応により発 生する発熱(水和熱)により,温度応力に伴うひび 割れ発生の確率が高まる。過大な貫通ひび割れは遮 蔽性能に影響を及ぼす可能性があるため,発熱量が

表 7 γ線に対する透過特性

	透過率					
試験体	厚さ (cm)	0	5	10	15	20
香島コンカリート	実験値	1.00	0.50	0.21	0.08	0.03
里重コンクリート	解析值	1.00	0.48	0.20	0.08	0.03
並通コンクリート	実験値	1.00	0.68	0.40	0.23	0.12
音通コンクリート	解析值	1.00	0.64	0.37	0.21	0.11

図 6 γ線に対する遮蔽性能比較(Co-60線源)

図 7 γ線に対する遮蔽性能比較(1/10性能比較)

小さい中庸熱ポルトランドセメントを設定した。また単位水量を低減することで、単位セメント量を減らす工夫を施した。実施工の前に施工手順や打設量を考慮した3次元1/4解析モデル(図8)を用いて、マスコンクリート温度応力解析を実施した。

表8に解析の概要を示す。重量コンクリートの熱 特性(熱定数)は,事前に重量コンクリートの試験 体を作製し,簡易断熱養生中のコンクリート供試体が 硬化する際の温度変化を測定した結果を用いた。

過大なひび割れを生じさせないための目標値は, 応力強度比(コンクリートの温度応力と温度ひび割 れ発生強度の比)1.3以下と設定⁵⁰した。最大応力 引張強度比の解析結果(図9)は,最大値で1.14と なり目標値を満たした。温度応力解析により,熱に よる過大なひび割れの発生の可能性が少ないことを 確認し,施工計画の参考とした。

図8 3次元解析モデル(1/4モデル)

表8 解析概要

項目	内容
解析手法	3次元有限要素法(FEM) 温度:発熱の時間依存を考慮した非定常 熱伝導解析 応力:若材齢クリープひずみを考慮した 非線形応力解析
解析ソフト	ASTEA-MACS Ver6 (株計算力学研究センター
打設検討時期	標準季(5月後半)に重量コンクリート 1層目打込み 標準季(6月前半)に重量コンクリート 2層目打込み
想定検討期間	6 か月

5. 施工

重量コンクリートは,骨材の吸水率や貯蔵の管理, 計量方法など,普通コンクリートとは異なる特殊な コンクリートのため,製造に関して,コンクリート 工場を占有して製造する必要がある。そのため,重 量骨材の搬入時期や品質管理方法などを詳細に検討 した。

過去の重量コンクリート工事は、コンクリートバ ケット(容器)や、ポンプ車を利用して打ち降ろす 施工(図10)が主流であった。しかし、RI川崎の 重量コンクリート遮蔽体は上階に計画されているた め、重量コンクリートを圧送するポンプ車等の選定 や手順についても検討を実施した。

実際の施工前に、実大模擬壁試験体(図11)を 用いた施工試験を実施し、重量コンクリートの製造、 運搬、打設などにおける品質や施工上の問題がない ことを確認した。実大模擬壁試験体は、コンクリー ト内部の配管や配筋密集部となる打設が困難な箇所 を対象とし、実際に打設することで重量コンクリー トの充填具合を確認した。コンクリートを密実に締 め固めるための振動器具(バイブレータ)を長時間 使用すると材料分離を生じさせる可能性があるた め、振動器具の使用方法や加振の上限時間などを確 認した。また重量コンクリートの模擬試験体から、 コンクリート硬化後に8本のコアを抜き、気乾単位 容積質量測定用の試験体を採取した(図12)。

測定結果は、すべての試験体において 3.50 t/m³ 以 上の気乾単位容積質量を計測し、ばらつきも少なく、 密実で均一な遮蔽体が施工可能であることを確認し

図9 最大応力引張強度比

バケットによる打設 打降ろしによる打設状況 図 10 過去の重量コンクリート工事の様子

型枠脱型後の状況

打設状況 図 11 実大模擬壁試験体

コア抜きの状況 図 12 コア抜きの状況

採取されたコア供試体

た。

実際の施工では,実大模擬壁試験体の施工試験で 得られた知見に加え,より一層の品質確保のために, コンクリートの自由落下高さの検証や,打重ねの時 間管理などを詳細に設定した。

様々な対策を実施した実際の重量コンクリートの 打設(打設量 150 m³約 530 t 相当)では,硬化後 にひび割れなどの不具合もなく密実で均一な重量コ ンクリートの遮蔽体を施工することが出来た。実際 の施工状況と施工完了後の状況を図 13 に示す。

6. おわりに

RI 川崎において,安定した品質の重量コンクリートを製造し,密実でかつ均一な重量コンクリートの遮蔽体を施工することが出来た。

1回目の打設状況

上階への圧送状況

図13 施工

今後は, 放射線施設において更なる展開を図りた い。

参考文献

- (磯康彦ほか,重量コンクリートの施工と遮蔽に関 する実験 日本建築学会論文集第66号・昭和35 年10月
- 2)神山行男ほか、チリ産磁鉄鉱石の重量コンクリート用骨材への適用について、日本建築学会大会学術 講演梗概集(北陸)(昭和58年9月)
- T. Sato, K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto, S. Noda, T. Ogawa, H. Iwase, H. Nakashima, T. Fukahori, K. Okumura, T. Kai, S. Chiba, T. Furuta and L. Sihver, Particle and Heavy Ion Transport Code System PHITS, Version 2.52, *J. Nucl. Sci. Technol.* 50:9, 913-923 (2013)
- 4)原子力安全技術センター、放射線施設のしゃへい 計算マニュアル(2007)
- 5) 日本建築学会,マスコンクリートの温度ひび割れ 制御設計・施工指針(案)(2008)
- 6) 日本建築学会,建築工事標準仕様書・同解説 JASS
 5 鉄筋コンクリート工事(2015)
- 7) 日本建築学会,建築工事標準仕様書・同解説 JASS
 5N 鉄筋コンクリート工事(2008)
- 8) 乗物丈巳ほか,単位容積質量 3.5t/m³ 以上の重量コ ンクリートに関する研究 (その1),日本建築学会大 会学術講演梗概集 (九州) 1393-1394 (2016)
- 9) 小田川雅信ほか,単位容積質量 3.5t/m³ 以上の重量 コンクリートに関する研究 (その2),日本建築学会 大会学術講演梗概集 (九州) 1395-1396 (2016)

(㈱竹中工務店)