利用技術

# リチウムイオン実電池内部のリチウムイオン分布を X線コンプトン散乱法により透視





鈴木 宏輔 櫻井 浩 Suzuki Kosuke Sakurai Hiroshi (群馬大学大学院理工学府電子情報部門)

1 はじめに

X線は古くから、物質の内部を調べるためのプロ ーブとして用いられてきた。最も身近な例としては, 医療分野で用いられているレントゲン写真が思い浮 かぶであろう。レントゲン写真は、人体に X 線を 照射することで物質(骨や脂肪など)により X 線 の吸収量が異なることを利用して体内を可視化して いる。X線の吸収を用いる方法以外にも、X線が物 質内の電子と散乱することを利用して、結晶内部の 原子の周期配列や電子状態の変化に関する知見を得 ることができる。X線と電子との散乱は、その散乱 の仕方により干渉性散乱(トムソン散乱)と非干渉 性散乱(コンプトン散乱)に大別される<sup>1)</sup>。前者は、 散乱の前後でX線のエネルギーが変化しない散乱 であり、後者は散乱の前後でX線のエネルギーが 変化する散乱である。干渉性散乱における散乱 X 線強度は、電荷の4乗に比例するため原子番号の大 きな元素ほど測定に有利となる。一方. 非干渉性散 乱における散乱 X 線強度は、それぞれの電子から の非干渉性散乱強度の足し合わせとなるため原子番 号に依らず観測することが可能となる。非干渉性散 乱(コンプトン散乱)におけるこの特徴は、原子番 号の小さな元素を測定する際に有利であり、リチウ ムイオン電池内部のリチウムの変化を観測すること などに有効と考えられる。

リチウムイオン二次電池の開発上の問題点の1つ に電極内においてリチウムイオンの反応分布に不均 一性が生じることがある。この不均一な反応分布は, 電池の寿命を低下させるとともに,局所的な過電圧 状態を引き起こし電池の発火につながることが懸念 される。そのため,電池の充放電下において非破壊 でリチウムの反応分布を調べる手法の開発が望まれ ている。

これまで、筆者らは、高エネルギーの放射光 X線を用いたコンプトン散乱法により、非破壊でリチ ウムイオン電池内のリチウムを定量する手法の開 発<sup>2)</sup>. 並びに、正極材料の電極反応メカニズムの解 明<sup>3,4)</sup>を行ってきた。コンプトン散乱法を用いること の特徴は、本手法が非干渉性散乱を利用した実験手 法であるため、軽元素を測定できることである。 また、入射 X 線として高エネルギーの放射光 X 線を 使用するため、非破壊で測定が行える。最近筆者 らは、コンプトン散乱実験から得られるコンプトン 散乱 X 線エネルギースペクトル. すなわちコンプト ンプロファイルを解析することで、プロファイルの 変化と試料のリチウム組成との間に線形関係が成り 立つことを見出した。さらに、本手法を市販のコイ ン電池に適用し、放電下における正極内のリチウム 組成の変化を非破壊で測定したので報告する<sup>2)</sup>。

## 2 コンプトン散乱法とコンプトンプロファイル

コンプトン散乱法は、X線光子と電子との散乱に より、光子のエネルギーの一部が電子に与えられ、 散乱後のX線光子のエネルギーが入射X線光子の エネルギーより低くなる現象を利用する実験手法で ある。理論の詳細は,文献5)を参照していただき たい。

実験は、高輝度光科学研究センター(JASRI) SPring-8のビームラインBL08Wにて行った。 BL08Wは、100keV~300keVの高エネルギーX線を 利用できるビームラインである。高エネルギーX線 は、高い物質透過能を有する。図1にステンレス材 へのX線の侵入深さを示す。ここで、ステンレス 材の質量吸収係数は、National Institute of Standard and Technology(NIST)のデータベース<sup>®</sup>の値を参 照した。ステンレスの密度を8g/cm<sup>3</sup>と仮定しX線 の侵入深さtを見積もった。図より、100keVのX 線を用いた時、ステンレス材へのX線の侵入深さ はおおよそ3.4mmとなり十分に電池の外装を透過 することが可能であるため、非破壊での測定が行え る。

コンプトン散乱実験では、電子によりコンプトン 散乱された X 線光子のエネルギースペクトルを測 定することで、(1) 式で表されるコンプトンプロ ファイル  $J(p_z)$  を得る<sup>5)</sup>。

$$J(p_z) = \iint \rho(\mathbf{p}) dp_x dp_y \tag{1}$$

ここで、 $\rho(\mathbf{p})$  は電子運動量密度(すなわち、 電子の持つ速度分布)であり、 $\mathbf{p}=(p_x, p_y, p_z)$  は運 動量である。(1) 式より、電子運動量密度を z 軸(散 乱ベクトル)方向に射影した物理量がコンプトンプ ロファイルとなる。このコンプトンプロファイルは、



図1 X線のエネルキーに対するステンレス材への X線の 侵入深さ

X線光子と電子との散乱においてエネルギー保存則 と運動量保存則が成り立つことを出発点としてい る。電子により散乱されたX線光子のエネルギー を*E*」とすると、*E*」は、(2)式で表される。

$$E_{1} = \frac{E_{0}}{1 + \frac{E_{0}}{mc^{2}} \left(1 - \cos\theta\right)} + \frac{\frac{\hbar}{m} \left(\mathbf{k} \cdot \mathbf{p}\right)}{1 + \frac{E_{0}}{mc^{2}} \left(1 - \cos\theta\right)}$$
(2)

ここで. E は入射 X 線光子のエネルギー. k は 散乱ベクトル, m は電子の静止質量, θ は散乱角, cは光速である。(2)式において、右辺の第1項は 静止した電子との散乱による X線エネルギーの減 少を表し、第2項は運動している電子との散乱によ る X 線のエネルギーシフト (ドップラーシフト) を表す。このドップラーシフトは、電子の運動量を 散乱ベクトル方向へ射影した成分となり、 散乱ベク トルに垂直な断面において同じ*E*」を与える。その ため、E のX線光子を観測する確率は、電子が散 乱ベクトル方向に運動量p<sub>2</sub>を持つ確率(運動量分布) に比例する。すなわち、 $\rho(\mathbf{p})$ を $p_x$ と $p_y$ で積分し た量に比例することから、J(p<sub>z</sub>)が導かれる。こ こで、(3) 式で表されるように、 $\rho(\mathbf{p})$  は実空間に おける電子の波動関数を運動量空間にフーリエ変換 した関数の2乗で与えられる。

$$\rho(\mathbf{p}) = \sum_{j} n_{j} \left| \int \Psi_{j}(\mathbf{r}) \exp(-i\mathbf{p} \cdot \mathbf{r}) d\mathbf{r} \right|^{2}$$
(3)

(3) 式において、 $\Psi(\mathbf{r})$ は、実空間における電子 の波動関数であり、nは電子の占有数である。添え 字のjはj番目の電子であることを表す。(3) 式、 並びに、(1) 式より、 $J(p_2)$ は電子の波動関数に 直結した物理量であり、元素ごとにプロファイルが 異なるという特徴を持つ。図2にHartree-Fock 計算<sup> $\eta$ </sup> により得られたLi 原子、Mn 原子、O 原子のコンプ トンプロファイルを示す。プロファイルの違いを明 確にするため、J(0) = 1となるように規格化した。 図のLi 原子、Mn 原子、O 原子のプロファイルの半 値幅は、それぞれ 0.54atomic unit (a.u.)、1.18a.u.、 1.72a.u. である。ここで、atomic unit (原子単位) は、 電子電荷を e、電子の静止質量を m、プランク定数



図 2 原子モデル計算により計算された Li 原子, Mn 原子, O 原子のコンプトンプロファイル

を h, 光速を c, 微細構造定数を a (=137.04) とし た時, e = m = h = 1, c = 1/a となる単位系である。 原子モデルのコンプトンプロファイルから, Li 原 子のコンプトンプロファイルが最も幅の狭いプロ ファイルであることが分かる。そのため, このプロ ファイルの違いを数値化すれば元素を定量することが 可能となる。

## 3 コンプトンプロファイルのラインシェイ 解析法(Sパラメータ解析法)

コンプトンプロファイルがリチウム量により異な ることを実証するため、化学的にリチウム組成を変 化させた Li<sub>x</sub>Mn<sub>2</sub>O<sub>4</sub> (x = 0.5, 1.1, 1.2, 1.8, 1.9, 2.0, 2.1, 3.3)のコンプトンプロファイル測定を行った。 Li<sub>x</sub>Mn<sub>2</sub>O<sub>4</sub> は、リチウムイオン電池の正極材料として 既に利用されている材料である。図3(a)に Li<sub>x</sub>Mn<sub>2</sub>O<sub>4</sub> (x = 0.5, 1.1, 2.0)のコンプトンプロファ イルを示す。リチウム組成の違いは主に $p_z = 0$  a.u. 付近に現れており、リチウム量が多くなることで コンプトンプロファイルの波高が高くなることが分 かる。リチウム組成の違いによるプロファイルの変 化を数値化するため、図3(b)に示すように、リ チウム組成の変化に敏感な領域 S<sub>L</sub> とあまり敏感で ない領域 S<sub>H</sub> との面積比 S をとり、以下の(4)式で S パラメータを定義する。

$$S = \frac{S_{L}}{S_{H}} = \frac{\int_{-d}^{d} J(p_{z}) dp_{z}}{\int_{-10}^{-d} J(p_{z}) dp_{z} + \int_{d}^{10} J(p_{z}) dp_{z}}$$
(4)



図 3 (a) コンプトン散乱実験により得られた Li<sub>x</sub>Mn<sub>2</sub>O<sub>4</sub> (*x* = 0.5, 1.1, 2)のコンプトンプロファイル。(b) S パラメ ータの概念図。S パラメータは、S<sub>L</sub> と S<sub>H</sub> との比で表される

ここで. dはリチウム組成の変化に敏感な領域と あまり敏感でない領域との境界を表す。パラメータ dを決めるため、**図4**に Li<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>から Li<sub>1.1</sub>Mn<sub>2</sub>O<sub>4</sub>へ の電子運動量分布の変化(差分コンプトンプロファ イル)を示す。リチウムが挿入されることによって、 おおよそ 6a.u. 付近まで電子運動量分布が変化する ため, 本研究では d = 6a.u. とした。この時の,  $Li_{x}Mn_{2}O_{4}$  (x = 0.5, 1.1, 1.2, 1.8, 1.9, 2.0, 2.1, 3.3)のSパラメータを図5に示す。横軸は,高周 波誘導結合プラズマ発光分光分析法(Inductively coupled plasma: ICP 分析法)により測定された試料 のリチウム組成である。得られた S パラメータは, リチウム組成の増加とともにその値が増加してお り、Sパラメータとリチウム組成との間に線形関係 が成り立つ。実験により得られたSパラメータの妥 当性を検証するため,原子モデル計算<sup>7)</sup>,第一原理 バンド計算法(KKR-CPA法)<sup>8-10)</sup>.密度汎関数法<sup>11,12)</sup> によりコンプトンプロファイルを計算し、Sパラメ ータの理論値を求めた。その結果,Sパラメータの 理論値もリチウム組成との間に線形関係が成り立 ち、実験結果を再現することが確かめられた。

本手法の特徴は、コンプトンプロファイルを利用 することである。これまで、コンプトン散乱 X 線 強度を用いて、電池内部の可視化が行われている<sup>13)</sup>。 しかし、コンプトン散乱 X 線強度を用いる方法では、 物質による X 線吸収の影響があるためリチウム量 を定量することが難しい。一方、コンプトンプロフ ァイルは、原理的に X 線の吸収の影響を受けない ため元素の濃度を定量することが可能となる。また、 *S*パラメータの理論値が実験結果を再現することか ら、理論計算の結果から元素量についての検量線を 得ることができる。



図4 Li<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>からLi<sub>1.1</sub>Mn<sub>2</sub>O<sub>4</sub>への電子の運動量分布の変化



図5 リチウム組成に対するSパラメータの実験値と理論値

### │**4**│*S* パラメータ解析法を用いた電池内部の可視化

Sパラメータ解析法を市販のコイン型リチウムイ オン一次電池 (CR2032)に適用した。実験は、115keV に単色化された入射 X線をスリットにより縦 0.1mm,横0.5mmに成形した後、回折計上に設置 されたコイン電池 (CR2032) に照射した。コイン 電池から90度方向にコンプトン散乱された X線の エネルギースペクトルをゆ0.5mmのコリメータを 通した後、Ge 半導体検出器で計測した。コイン電 池内の観測領域は、縦0.1mm×横0.5mm×奥行き 0.5mmである。また、コイン電池は、充放電装置 に接続され5.5mAの定電流で15.75時間かけて放電 させ、その後、6時間かけて電池内の反応を緩和さ せた。

図 6 (a) に CR2032 の X 線透過像を示す。電池は, MnO<sub>2</sub> 正極(厚さ 1.8mm), Li 負極(厚さ 0.6mm), セ パレータ(厚さ 0.1mm)から構成されている。図 6 (b)



図 6 (a) CR2032 の X 線透過像。(b) 放電過程における S パラメータの時間変化



図7 図6(b)のA位置における放電過程のSパラメータの時間変化とその時のリチウム組成の変化

に放電過程における S パラメータの時間変化を示 す。図6(b)は、縦0.1mm×横0.5mm×奥行き 0.5mmの観測領域を保ちつつ入射 X 線を電池の高 さ方向(z方向)に走査させながら測定を行った。 図において, 0mm ≤ z < 1.5mm の領域が正極, z= 1.5mm 位置がセパレータ, 1.5mm < z ≤ 2.3mm の領 域が負極に対応し、Aで示した点線の位置のみ900 秒で測定した。それ以外の測定点は10秒で測定し た。放電が進むにつれて、セパレータに近い位置か らSパラメータの値が高くなる領域が正極内に広が っていくことが分かる。図5より、Sパラメータは、 試料内のリチウム量が増えるに従って増大するた め、放電の進行によってリチウムイオンが負極から 正極内に拡散し、セパレータに近い部分から Li<sub>x</sub>MnO<sub>2</sub>が形成されていることが示唆される。更に、 放電によってセパレータの位置が負極側にわずかに 移動していることが分かる。これは、Li<sub>x</sub>MnO<sub>2</sub>が形 成されたことで正極材料の体積が膨張したことに起 因すると考えられる。図7に図6(b)のA位置に おいて得られたコンプトン散乱 X 線のエネルギー

スペクトルから求めたSパラメータと検量線を用い て算出したリチウム組成を示す。**図7**のSパラメー タは、測定の分解能等の影響を考慮し測定開始直後 のSパラメータの値で規格化した。おおよそ16時 間の放電によってSパラメータがおおよそ6%変化 し、この放電によって正極内で $MnO_2$ から Li<sub>0.75</sub> $MnO_2$ が形成されたことが分かった。

# 5 おわりに

本研究において,筆者らはコンプトン散乱法から 得られるコンプトンプロファイルを解析すること で,リチウムイオン電池正極材料のリチウム量を定量 する手法(Sパラメータ解析法)を開発した。そし て,Sパラメータ解析法を市販のコイン型リチウムイ オン一次電池に適用し,放電過程における正極内の リチウム組成を非破壊で測定することに成功した。 本手法の特徴は,高い物質透過能を持つ高エネルギ ーのX線を用いることであり,非破壊での測定が 可能となる。また,本手法は,正極材料のみならず 負極材料にも適用することが可能であるため充放電 時に電池全体で起こる反応を測定することも可能と なる。現在,筆者らはリチウムイオン二次電池に本 手法を適用し,充放電に対応した正極,及び,負極 のリチウム量の変化を測定・解析を行っている。

#### 謝辞

本研究は、ノースイースタン大学(アメリカ)の Bernardo Barbiellini 准教授, Arun Bansil 教授, 立命 館大学の折笠有基准教授, 京都大学の内本喜晴教授, 並びに, 高輝度光科学研究センターの伊藤真義副主 幹研究員, 櫻井吉晴主席研究員との共同研究として 行われました。本研究は, 科学技術振興機構の先端 計測分析技術・機器開発プログラム「蓄電池固体内 反応局所領域の非破壊分析装置と手法の開発」, 及 び, JPSJ 科研費 24750065, 15K17873 の助成を受け て実施されました。コンプトン散乱実験は, 課題番 号 2011A1867, 2011B2004, 2012B1470 の下行われ ました。

#### 参考文献

- 1) カリティ,松村源太郎訳,X線回折要論,pp.107-113, アグネ出版(1961)
- 2) K. Suzuki, et al., J. Apple. Phys., 119, 025103 (2016)
- 3) K. Suzuki, et al., Phys. Rev. Lett., 114, 087401 (2015)
- 4) B. Barbiellini, et al., Appl. Phys. Lett., 109, 073102 (2016)
- M. J. Cooper, et al., "X-ray Compton Scattering", 22-39, Oxford Univ. Press (2004)
- 6) National Institute of Standard and Technology (NIST) HP, URL: http://www.nist.gov/
- F. Biggs, et al., "Hartree-Fock Compton profiles for the elements", At. Data Nucl. Data Tables., 16, 201-309 (1975)
- A. Bansil, et al., J. Phys. Chem. Solids., 62, 2191-2197 (2001)
- 9) A. Bansil, et al., Phys. Rev. B., 60, 13396-13412 (1999)
- 10) A. Bansil, *Phys. Rev. B.*, **20**, 4025-4034 (1979)
- 11) R. Dovesi, et al., Int. Quantum Chem., **114**, 1287-1317 (2014)
- R. Dovesi, et al., "CRYSTAL14 User's Manual", University of Torino (2014)
- 13) M. Itou, et al., J. Synchrotron Rad., 22, 161-164 (2015)