技

対向型乳腺専用高分解能PET(PEM)の 開発と性能の概要

伊藤 正敏,他* *Ito Masatoshi* (東北大学サイクロトロン・ラジオアイソトープセンター, 仙台画像検診クリニック)

1 はじめに

乳癌は女性が罹患するがんのトップを占めて おり、早期発見への対応が要請されている。ピ ンクリボン運動などにより乳癌検診の重要性が 強調されているが、乳癌による死亡率は、依 然, 増加を続けている¹⁾。乳癌検診は, 触診, 及び、X線マンモグラフィーが推奨されている が. 乳腺の発達した若い年齢層では検出能力が 低下し, また, 検査を行うためには乳房を強く 圧迫する必要があることから検診受診率は.欧 米に比較して低い。X線マンモグラフィーや超 音波が乳腺の組織密度や組織構築などの物理的 特性を指標にがんを検出するのに対して、ポジ トロン断層撮影 (PET) は、がん組織の代謝特 性(グルコーストランスポーターとヘキソキナ ーゼ活性)を指標とする診断法で,糖代謝があ る程度昂進したがんでの検出力は高く、がん検 診に広く利用されている。PET では、放射性 薬剤投与による被ばくが避けられないことか ら, 投与放射能をあまり上げることができず,

結果として、解像力の点でほかの診断法に比較 して不十分である。近年は、PET に CT を同一 装置内に組み込んだ PET/CT が普及し、CT で 得られる精細な解剖図の上にカラーで PET 画 像が重なり,集積部位の臓器の同定が容易とな ったが、PET 自体の解像力の向上は、わずか であり、したがって、1 cm 以下の乳癌の検出 には難がある。一方,乳癌は,発見が早期であ るほど治癒率が高いことが知られており、進行 がんや、腋窩リンパ節転移のある症例の予後 は、不良である。近年 PET 装置の高分解能化 が試みられ、解像力1mmの動物用PETが開 発されている。これに触発され、乳癌診断用 PET 装置 (PEM, Positron Emission Mammograph) が開発された²⁾。最初に市販化された装 置は、小型検出器を対向して配置し、 走査する ことで三次元画像を取得した。検出器が小さい ことから感度が低く,撮影に時間が掛かるが, 得られた高分解能 PET 画像は、注目を引くも のであった³⁾。

東北大学多元物質科学研究所 吉川彰(現金 属材料研究所教授)研究グループでは、より短 い 蛍 光 寿 命 の 放 射 線 検 出 結 晶 を 探索し、 Lutetium に Praseodymium を dope した Pr:LuAG (プルアグ)の開発に成功した⁴⁾。古河機械金 属(株)素材総合研究所(現 つくば総合開発セ ンター)において、Pr:LuAGの量産化のめどが

^{*} 山本誠一¹, 熊谷和明², 三宅正泰², 伊藤繁記³, 佐藤 浩樹³, 小田野行男⁴, 矢野文月², 木戸章夫⁵, 馬場 護² (¹名古屋大学大学院医学系研究科, ²東北大学サイク ロトロン・ラジオアイソトープセンター, ³古河シン チテック(株), ⁴仙台画像検診クリニック, ⁵(株) CMI)

ついた段階で,東北大学サイクロトロン・ラジ オアイソトープセンター 馬場護教授をリーダ ーとして,高解像力 PEM 開発プロジェクトが 2005年に発足した。検出器結晶の改良と生産 を多元・古河グループ,検出回路系開発を山本 誠一 現 名古屋大学大学院医学系研究科教授, 画像再構成プログラム開発をサイクロ核医学と CMI(株)で分担し9年の歳月を経て完成させ, 2014年に薬事承認,古河シンチテック(株)か ら PEMGRAPH という製品名で発売となった (図1)。

図1 高解像カ乳房用 PET (PEMGRAPH) 概観 対向平板検出器の間に透明圧迫板を有し,乳房を弱く 固定する。着衣での撮影も可能

本装置は、平板対向型 PEM で、乳房を挟む 形で撮影する。円形検出器配置の PEM も開発 されているが、これに対する利点は、検出器間 隔が可変であることから乳房に、より接近して 撮影できること(感度の向上とランダム計数の 減少)、腋窩リンパ節の撮影が可能なことで、 短所は、欠落同時計数線(LOR: line of response)が避けられないため解像力の等方性 の確保に問題があることである。欠落 LOR の 問題は、画像再構成に統計的手法(ML-EM: maximum likelihood-expectation maximization) を用いることで実用レベルの画像を得ている。

2 Pr:LuAG 検出器の特性

Pr:LuAG 結晶の特性を表1に示す。Pr:LuAG は、LSOよりやや密度が低いが、エネルギー 分解能が高く、蛍光寿命が短いという特徴を持 つ(表1)。後者の利点は、同時計数時間を短 くできるので偶発同時計数が減少することが期 待される。計測された時間分解能が3.5 ns 以下 であったことから、本装置の同時計数時間窓を 5 ns としている。

3 本装置の構造

検出器は幅 23 cm×奥行 35 cm の平板 2 枚構

Tl:NaI	BGO	Ce:LGSO	Ce:LSO	Pr:LuAG
415	480	430	420	310
38,000	8,200	23,000	25,000	20,000
230	300	40~100	40	20
3.67	7.13	6.7	7.39	6.7
651	1,050	2,100	2,150	1,970
5.6	12	12.4	7.3	4.2
有	無	無	無	無
無	無	(100) 面	有	無
無	無	有	有	有
	Tl:NaI 415 38,000 230 3.67 651 5.6 有 無 無	Tl:NaI BGO 415 480 38,000 8,200 230 300 3.67 7.13 651 1,050 5.6 12 有 無 無 無 無 無	Tl:NaI BGO Ce:LGSO 415 480 430 38,000 8,200 23,000 230 300 40~100 3.67 7.13 6.7 651 1,050 2,100 5.6 12 12.4 有 無 無 無 無 100)面 無 無 有	Tl:NaI BGO Ce:LGSO Ce:LSO 415 480 430 420 38,000 8,200 23,000 25,000 230 300 40~100 40 3.67 7.13 6.7 7.39 651 1,050 2,100 2,150 5.6 12 12.4 7.3 有 無 無 無 無 無 1 5.6 12 12.4 7.3 5.6 5.6 12 12.4 7.3 有 無 無 5.6 12 12.4 7.3 5.6 12 12.4 7.3 5.6 五 5.6 12 12.4 7.3 有 無 5.6

表1 無機シンチレーション結晶の特性

*:¹³⁷Cs, 662 keV に対する値, %

成とし、2.1×2.1×15.0 (mm)の角型 Pr:LuAG 結晶 10,240 個と位置敏感型光電子増倍管(浜 松ホトニクス(株)製)を24 個使用している。 検出器の有効エリアは、140×200 (mm)であ る。検出器間には着脱可能な乳房固定板を 有す。ここでの乳房圧迫は、X線マンモグラ フィーに見られるような強いものではなく、呼 吸等に伴う乳房の動揺を低減させるためと視野 内に乳腺組織をできるだけ入れるために、乳房 を軽く押さえる役割を担う。被験者は、薄い着 衣下での撮影も可能である。

4 PEMGRAPH の基本性能

4.1 空間分解能

²²Na 点線源を用いて得られた点拡がり関数から,空間分解能は,検出器間隔 15 cm での視野 中心で 2.1 mm FWHM であった。検出器直交軸 方向では,7.0 mm FHM と欠落 LOR による異 等方性が生じている(図 2)。

4.2 感度

FOV を満たすプールファントムの測定結果 から,装置の放射線検出感度は,検出器間隔 10 cm で,9.0 cps/kBq であった。計数率特性 は,真の同時計数率のピークは 51.4 kcps 以上 (ファントム内放射能濃度:35.7 kBq/ml), NECR ピークは 32.6 kcps (ファントム内放射能 濃度:26.4 kBq/ml) が得られている。

5 PEM 撮影法

乳癌症例の撮影経験から,PEM撮影ポジシ ョニングの重要性が明白となった。それは,日 本人に多い脂肪の少ない乳房の場合,乳癌病巣 を視野に入れられない例が少なからず存在し た。つまり,PETで検出されるのにPEMで陰 性となることである。また,主病変から後方の 胸壁に向かう腫瘍進展が時に見られることで, この術前検出もPEMに期待される範囲と考え るが,検出器辺縁(1~2 cm)で感度が落ちる PEMの特性から,単に乳房を挟むだけでは, 胸壁に近いがんの広がりを有効視野に入れるこ

とができないことであった。筆者らのプロトタ イプ機では、検出器にチルト機構を設け、乳房 を下垂させることも試みたが、これでは、不十 分であった。試行錯誤の結果、乳房のみを挟む 撮影は諦めて、検出器間隔を多少拡げ(15 cm 程度に)胸壁を含めての乳房撮影をすることに した。乳房圧迫は、大体 50 N 程度とし、強い 乳房変形が生じないようにした。撮影時間は, ML (横) 方向で一側 2.5 分, 腋窩撮影は, 斜接 線、又は、前後方向とし、5分としている。し たがって、全体で20分程度の所要時間である。 解像力の異等方性はあるが、腫瘤の三次元的把 握は可能なので、CC(上下)方向は、通常、省 略し、再構成 CC 断面で代用している。位置決 めを行う放射線技師の被ばくは、1~2 μSv/人 程度であった。

6 PEM 臨床症例

【症例 1. PET と PEM 画像の対比】

右内側(A領域)2.5 cm 浸潤性乳管癌(IDC)のPET 画像を図3(a)(再構成矢状断)にPEM 画像を図3(b)に示す。腫瘤内壊死層と考えられるFDG 低集積部分がPEM でより明瞭に描出されている。当施設のPET(Biograph16, Siemens)の臨床条件での解像力は,7.1 mm FWHM である⁵⁾。

【症例 2. PEM による乳癌微小構造の描出】

右外側 (D 領域) 18×13×8 (mm) IDC. PET (図4(a))では、1個の腫瘤として描出される が、PEM (図3(b)) では、数個の小腫瘤とし て分解されている。乳管進展を見ていると考え る。

【症例 3.1 cm 以下乳癌(図 5)】

右内側 (AC 領域) の小乳癌:9 mm。PET/

図3 症例1のPET, PEM 画像 右乳腺A領域(乳頭から3.5 cm)のサイズ2.5 cm, 浸潤性乳管癌。乳癌の辺縁と内部構造が PEM でより 詳細に描出されている。(a) PET(再構成矢状断;シ ーメンス社製 Biograph 16), (b) PEMGRPH 画像

CT(再構成矢状断と軸断)では,軽微な点状 集積として、かろうじて視認される (SUVmar= 0.9)。PEMにて集積は、明瞭である。体重 43 kgとやせた方なので胸壁撮影にて描出。

【症例 4. PEM によるリンパ節診断(図 6)】

左内側 (AC 領域)進行乳癌症例での腋窩リ ンパ節描出を PET (図6(a)) PEM (図6(b)) 比較して示す。PEMは、検出器間隔20 cmで 腋窩を前後に挟む形で撮影。現時点では、 腋窩 リンパ節診断能において、PEM が PET/CT よ り優れているとのデータはないが、PEM に期 待される分野と考える。

【症例 5. ポジトロンカメラとしての PEM】

対向型 PEM の構造的特徴は、フレキシブル であることである。図7にFDG 投与後の手の 連続断面画像を示す。検出器を近付けることで 受容 LOR 角が拡がり、より精度の高い画像が 再構成できる。

7 I期乳癌のPEM 診断結果

PEM と PET を使って 2 cm 以下の乳癌(病 期I期相当)を認識できた症例数を比較した。 両方で確認できた症例が48例、PEMで認識で きず. PET で確認できたケースが7例. 一方.

(b)

図4 症例2のPET, PEM 画像

右乳腺D領域(乳頭から1 cm)のサイズ 1.8cm 浸潤性乳管癌。体重 43 kg のや せた方のため、PEM は、胸壁接線撮影として施行。乳房圧迫なし。PET では、単 一の腫瘤として描出され、内部構造は分解されていないが、PEM では、数個の微 小結節が(恐らく乳管に沿って)並んでいることが分かる。右下に腫瘤部分の拡大 像を挿入した。(a) PET (再構成矢状断,右,左乳腺),(b) PEMGRPH 画像

図 6 腋窩リンパ節描出能の PET, PEM 比較 進行乳癌症例で左腋窩に多数のリンパ節が存在していた。PEM 画像の方が,輪郭明瞭に描出されているが,存在診断において, PEM が PET を凌駕しているとまでは言えない。(a) PET,再 構成冠状断,(b) PEMGRPH 前後方向撮影画像

PEM で認識できて, PET で確認できなかった 症例が15 例あった。PET と比較して PEM の 方が高い検出感度(75.9%)を示した。両方合 わせて検査すると感度が84.3%に高まった。1 cm以下の症例で検討すると,検出感度はPET が36.8%と低い数値だが,PEM では57.9%で あった。両者を併用して68%程度診断ができ たことになる。PET で見えて PEM で見えなか った症例は,撮影視野から外れてしまったと考 えられるので,撮影法の改善により小さい乳癌 への代謝診断の道が開けると予想される。

8 おわりに

対向平板型 PEM は,解像力の異等方性の問 題はあるが,リング型 PEM よりもより少ない 電子回路で広い視野を得られる利点がある。検 出器間隔可変であるので,クローズアップ撮影 や厚い被写体の撮影も可能である。乳腺撮影に おいても,様々な胸壁形状や乳房形態,乳癌の 乳房内発生位置に対応できるアジア人に適した

図7 正常者右手の PEM 画像

健常志願者の PEM 画像である。検出器間隔 10 cm。手掌(上段左)から手背(下段右) まで5 mm 間隔での連続断面を示す。PEM は、ポジトロンカメラとしても機能する

撮影装置と考える。症例で示されるように臨 床条件での PET 解像力 7.1 mm と PEM 解像力 2.1 mm では,画像に大きな違いが見られる。 PET, PEM ともに更なる解像力向上を目指す べきであろう。

【謝辞】

本研究は、地域研究開発資源活用促進プログ ラム (JST),新技術開発事業団 (NEDO)の研 究支援を受けた。東北大学サイクロトロン核医 学研究部,放射線管理研究部などサイクロトロ ン・ラジオアイソトープセンターの研究者の皆 さんの協力に感謝する。

参考文献

- 1) 国立がん研究センター, がん情報サービス, http://ganjoho.jp/reg_stat/statistics/stat/annual
- 2) Thompson, C.J., et al., Med Phys., 21, 529–538 (1994)
- 3) Murthy, K., et al., J Nucl Med., 41 (11), 1851–1858 (2000)
- Kamada, K., et al., IEEE Trans. Nucl. Sci., 55, 1488-1491 (2008)
- 5) 佐々木敏秋, ほか, RADIOISOTOPES, 60, 473-486 (2011)