

電子線形加速器の 電子ビームの高強度化

1 はじめに

電子源として熱電子銃や高周波電子銃等色々 なものが使われ,既に大電流発生が可能になっ ている。一方,電子ビーム加速として,DC高 圧電源を使った静電加速は数十kV~数 MV 程 度までが可能で,より高いエネルギーまで加速 するには高周波線形加速器を使う。また,最近 超高強度レーザーを使った電子ビーム加速が話 題になっている。本稿では,最も電子ビームを 高エネルギーまで加速している実用的な高周波 電子線形加速器のビーム強度 100 倍実現に向け た問題点と実情について報告する。

100 W クラスの工業・医療用電子線形加速器 が色々な用途に使われているが,透視,撮影, 分析,医療診断・治療用 X 線発生装置は主に 数十~百数十 kV 程度までの直流電子 X 線管で あり,数百 W~数+ kW のものが市販されてい る。そのため,電子線形加速器の利用は数 MeV を超える高エネルギー電子ビーム生成に限定さ れている。また,重合,架橋,分解,殺菌等の 放射線処理のための工業照射用高出力電子加速 器として,エネルギーが 10 MeV 以下,150 kW の電子ビームパワーの電子加速器ロードトロン (100 MHz 程度の連続高周波加速による新型加

 浦川 順治 Urakawa Junji (高エネルギー加速器研究機構)

速器)¹⁾ をベルギーの Ion Beam Applications 社 が販売しているので,電子線形加速器の工業利 用は更に制限されている状況である。しかし, 工業・医療用電子線形加速器の高度化によっ て,電子ビームの高輝度化と高強度化技術が進 展しているため,電子線形加速器の利用は高エ ネルギー電子ビーム生成にとどまらず,応用の 展開が期待できる状況になってきた。

本稿では、電子ビームの高強度化のために克 服すべき問題点と技術開発について、高エネル ギー加速器研究機構が進めている文部科学省受 託事業"量子ビーム基盤技術開発プログラ ム"²⁾の最近の成果と展望も含めて報告する。 また、ビーム強度を実用的な観点から、ビーム 電荷量、ビームエネルギー及びビーム繰り返し の積、すなわちビームパワーとして解説する。

2 線形加速器による電子ビーム強度増強 上の問題点

線形高周波加速空洞で大強度電子ビームを安 定に加速するには,電子ビームのサイズが高周 波加速空洞の大きさ(高周波の波長)に比べて 十分に小さく(高品質電子ビーム),エネルギ ー拡がりも小さな多バンチ(粒子塊)電子ビー ムを加速空洞の中心に向かって加速電場と平行 な軌道を保って安定に入射しなければならな い。この軌道制御が不十分であるとビームサイ ズが増大したり,多バンチ電子ビームが振動し たりすることによって,ビームロスが発生す る。また,多バンチ電子ビーム加速に伴うビー ム負荷補正を的確に行わなければ,多バンチ電 子ビームのエネルギー拡がりが大きくなり,エ ネルギー分散がある場所でビームサイズが大き くなることによってビームロスが発生する。ま ず,電子ビーム生成過程で高周波加速に適した 多バンチ電子ビーム生成を実現することが電子 ビーム強度を上げるのに必須である。

カソード物質から発生する熱電子や光電子は 外部電界によって加速され, カソード物質近傍 から取り出されて利用に供されるが、大電流を 発生するためにはカソード物質から発生した電 子による空間電荷に打ち勝つ外部高電界が必要 になる。外部高電界をカソード物質表面に生成 する方法は、カソード物質を負電位にして (-500~-10 kV) アノード側に電子ビームを 引き出すか,電子源を高周波空洞にすることに よって高周波高電界で電子ビームを加速・引き 出して使う方法がある。カソード電極やアノー ド電極の DC 電界強度が 10 MV/m を超えると 放電が発生しやすくなるので、カソード上に 100 MV/m 程度の高電界を発生して電子生成す るには高周波電子銃かレーザー電場を使うこと になる。数 MeV 以上の高エネルギーまで大強 度電子ビームを加速する方法は, 放電対策や高 輝度化の観点から高電界高周波加速器によるも のである。最近, 高輝度-短パルス大電流電子 ビーム発生にフォトカソードを使った高周波電 子銃が使われるようになってきた。電子源から の電子ビームを高周波加速空洞で追加速するた めには、電子ビームの加速方向の長さ(バンチ 長)を高周波波長の1/20以下にする必要があ る。熱電子銃の場合,速度変調を利用したバン チ長圧縮装置を導入して、電子バンチ長をSband (2,856 MHz) 加速空洞に入る前で3 mm 程度まで圧縮する。光高周波電子源では光電子 生成用レーザーパルス幅が短く,加速されて出 てくる電子ビームバンチ長は十分に短いので, バンチ圧縮装置は不必要である。高周波加速に 同期した多パルスレーザー生成技術も既に開発 され,安定に動作させることができるようにな った^{3,4)}。近い将来,高周波の周波数で modelocked された連続レーザーパルスによって,高 周波空洞の加速周期に同期した光電子バンチ列 生成可能なレーザー装置開発が行われ,実用化 されるだろう。

多バンチ電子ビーム生成・加速によるビーム パワー増強で最も重要な克服すべき問題点は, 多バンチ電子ビームを生成・加速する軌道上で 発生するウェークフィールドによる電子ビーム 不安定性抑制とビーム負荷補正を最適にする制 御技術の高度化にある。しかし既に,多バンチ 電子ビーム軌道測定装置としてシングルパス高 精度位置検出器(分解能 10 μ m 以下)やバン チごとのエネルギー測定装置の技術は確立して いる。また,多バンチ電子ビームのビーム負荷 補正に関する技術実証実験⁵⁾も行われ,ビーム 負荷補正技術の実用化を行うことによって,現 状の数十 MeV 電子線形加速器のビームパワー を数百 W~数+ kW 以上に増強できる状況に なった。

3 光高周波電子源

1980 年ごろから高輝度電子ビーム生成を目 指して,空間電荷効果によるビーム品質の劣化 を抑制しながら直接短バンチビーム生成を実現 するために,フォトカソードを高周波空洞の端 板部に取り付けた光高周波電子源開発が始まっ た。Half cell photo-cathode RF Gun や Multi-cell RF Gun 等の開発が行われ,現状世界の多くの 研究所や大学の研究室で使用されているのは Brookhaven National Laboratory が長年使用して いる 1.6 cell photo-cathode RF Gun タイプであ る。この RF Gun ではフォトカソード部の最高 高周波高電界が100~130 MV/m程度^{6.7)}で電子ビーム生成が行われ,規格化エミッタンス1 mm-mrad以下の短パルス電子ビーム生成を実現している。大電流ビーム生成しためには,多バンチ電子ビーム生成技術が必須である。同時に,我々は多バンチ電子ビームをより高いエネルギーにして高周波加速管に直接入射できるように,3.6 cell photo-cathode RF Gun を開発した。図1にその高周波電子銃と構造を示す。

入力高周波パルスパワー 24 MW. パルス幅 12.5 µsec を電子銃空洞に入力した場合、ビーム 加速とビーム負荷補正を考慮するとパルス当た り4,000 バンチ以上生成でき、エネルギーは10 MeV以上である。単バンチ電荷量は1~2 nC が可能であるので、50 Hz 運転した場合のビー ムパワーは4kW 程度になる。電子銃空洞内で の電子バンチ生成・加速中の軌道はソレノイド 磁場と光電子生成位置によりほぼ決定するた め,高電界電子銃空洞・ソレノイド電磁石の設 置精度及びレーザーパルス列軌道制御を10 µm 精度で行えるように電子ビームの特性測定によ って、それぞれの位置を微調整することにな る。また、多バンチ電子ビーム負荷補正は空洞 内に高周波パワーが蓄積される立ち上がりのパ ワー増加分と電子バンチが得るエネルギー分を 平衡させることによって行う。動的な多バンチ 電子ビーム負荷補正が必要になれば、高周波入 カパワーの振幅変調制御も行うことになる⁸⁾。

さらにビームパワーを上げるために,ビームパ ルス長を伸ばすことが行われ,最終的に連続ビ ーム生成技術の確立を目指した研究開発が進め られている。既にフォトカソード高圧 DC 電子源 (500 kV 以上),クライオ光高周波電子源や超伝 導高周波電子源などの開発が進められ,10 mA 電子ビーム生成が実現している^{9,10)}。最近, 我々は L-band (1.3 GHz)の超伝導加速空洞で 大電流電子ビーム加速を行うために,1.3 GHz L-band 1.6 cell 光高周波電子銃を使って,1 msec

図1 3.6 cell RF 電子銃

図2 1 msec 均一ビームの様子 (~40 pC/bunch),青:BPM(位置検出器) の信号,紫:266 nm レーザーのゲート信号

パルス長の電子ビーム生成を行った。図2は常 伝導高周波電子銃から162,500 bunches/pulse, 3 MeV 多バンチ電子ビームを生成した時の信 号波形である。バンチ間の時間差は6.15 nsec で,電子ビーム輝度も十分に高く(規格化エミ ッタンス1 mm-mrad 以下),エネルギー拡がり (0.2%以下)も小さくなっている¹¹⁾。このよう に6 mA 程度のビーム生成・加速を行うための 多バンチ電子ビーム生成は可能になってきた。 さらに電子線形加速空洞で追加速することによ って,ビームパワーは上がるが,ビームロスが 起きれば高放射線レベルが問題となり加速器と して実用化できない。多バンチ電子ビームのビ ームサイズ,エネルギー幅とビーム軌道の管理 は最も重要な課題である。

図3 1.3 GHz 超伝導線形加速器 (STF) による高輝度 X 線発生実験装置

4 超伝導線形加速器による超多バンチ電子ビーム加速

常伝導線形加速器では加速管の空洞壁での高 周波ロスが大きいために、高周波のパルス幅は 数μs~十数μs程度である。空洞壁での高周波 ロスを最小にするために,超伝導高周波加速空 洞を使う。この場合, 高周波のパルス幅は msec 以上,又は連続運転が可能になる。我々 は、図3に示す超伝導線形加速器を高エネルギ -加速器研究機構内で構築し、常伝導高周波電 子銃から1msec長の電子パルスを発生して、2 台の超伝導加速空洞により5Hz 運転で40MeV 以上まで多バンチ電子ビーム加速を行ってい る。図4は使用した約1m長の超伝導加速空 洞の写真である。超伝導加速空洞に入射する超 多バンチ電子ビームの軌道補正が非常に重要 で、まず100バンチ程度のビームを使って軌道 を測り、軌道補正後に1 msec 多バンチ電子ビ

図 4 9 cell 1.3 GHz 超伝導加速空洞

ームを加速する。空洞電場の一様性や空洞の設 置精度もビーム加速運転上重要であり、図5に 示す加速電場測定を行い、十分な性能であるこ とを確認している。この超伝導線形加速器を使 って、43 MeV、162,500 bunches/pulseの超多バ ンチ電子ビームをレーザーパルスと衝突させ

ビーズを用いて計測された9連超伝導加速 空洞の軸上加速電場分布

実機9連超伝導加速空洞の性能試験結果。加速電場 25 MV/m を確認した

図 5 1.3 GHz 超伝導加速空洞の加速電場分布測定と加速電界測定

て、33 keV 高輝度 X 線生成の実験を現在進め ている。衝突点では電子ビームを 10 μm に収 束させ、30 mJのレーザーパルスと162.5 MHz の繰返しで1msec間衝突させると、逆コンプ トン散乱によりレーザー光子が 33 keVのX線 に変換され、電子ビーム方向に放出される。こ の高輝度準単色X線は色々な分析等に利用で きる輝度であり、短パルス性やエネルギー可変 性等の有用な特徴がある。この加速器は第2世 代放射光源からのX線と比べて同等以上の性 能を持ったX線を提供できる。現状のビーム 強度は、10 mA、50 MeV、5 Hz 1 msec パルス 運転であり、2.5 kW である。100 kW 程度のビ ームパワーを実現するためには、ビームパルス 幅を更に拡げるか連続運転を行うことになる。 この高強度電子ビーム運転の場合,電子ビーム を捨てるビームダンプ設計が放射線防護と熱破 壊の問題から大型になる。この問題を解決する 方法は大強度電子ビームからエネルギーを高周 波に戻し、減速して5 MeV 以下にした後にビ ームダンプに捨てる ERL (Energy Recovery Linac, エネルギー回収型リニアック)技術で ある12)。

5 将来展望

高強度・高輝度電子ビーム生成は、高周波線

形加速器による大強度多バンチ電子ビーム加速 のために最も重要な技術である。現在,DC高 圧電子源の電圧を500~750 kVまで上げて,フ ォトカソードから高品質の光電子を取り出す実 験が行われている¹³⁾。電子バンチの生成繰返し は現状 100 MHz 程度であるが,将来は1.3 GHz の超伝導高周波源の周波数になるように開発が 進められている^{14,15)}。一方,超伝導高周波電子 源の開発と実用化実験が進められ,数 MHz~ 75 MHz 程度までの繰返しで電子ビーム生成が 実現している¹⁶⁾。今後フォトカソードに照射す るレーザーパルスの繰返しを上げることによっ て,1.3 GHz の連続電子バンチ生成を目標にし た開発が進められている。

超伝導線形加速器の連続運転が可能になれ ば、10~100 mA までの電子ビーム加速も現実 的になる。例えば、100 mA、50 MeV 電子ビー ムのパワーは5 MW になり、これで逆コンプ トン散乱による X 線生成を行えば、第三世代 放射光源に相当する高輝度 X 線源を小型装置 で実現できる。これらの技術が確立され社会に 貢献できるようになれば、電子ビームエネルギ ーを高周波空洞に戻して、新しい電子ビーム加 速に使う ERL 技術がより身近なものになる。

100 kW クラスの 50 MeV 以下の電子線形加 速器は、ビームロスのほとんど起きない高精度 安定化制御と超伝導加速技術が普及すれば、多 くの高度な利用方法によって社会に貢献できる 技術になる。最先端の基礎研究装置として電子 線形加速器が活躍するには,数 MW レベルの ビームパワーが要求され今も開発が進められて いる。

【謝辞】

量子ビーム次世代ビーム技術開発課題「超伝 導加速による次世代小型高輝度光子ビーム源の 開発」は文部科学省委託事業であり,社会に貢 献するための高輝度X線源の小型化基盤技術 開発である。本技術開発の重要性を理解して, 援助と協力してくださっている高エネルギー加 速器研究機構,日本原子力研究開発機構及び大 学関係者に感謝いたします。また,文部科学省 からの支援に深く感謝いたします。

参考文献

- Jongen, Y., Abs, M., Genin, F., Nguyen, A., Capdevila, J.M. and Defrise, D., The Rhodotron, a new 10 MeV, 100 kW, cw metric wave electron accelerator, *NIM B*, **79**(1–4), 865–870 (1993)
- Urakawa, J., Compact X-ray source at STF (Super Conducting Accelerator Test Facility), *Journal of Physics: Conference Series*, **357**(1), 012035 (2012), doi:10.1088/1742-6596/357/1/012035
- 3) Hirano, K., *et al.*, *NIM A*, **560**, 233 (2006)
- 4) 福田将史, 他, 日本加速器学会誌 9(3), 156

(2012)

- Kashiwagi, S., et al., Jpn J. Appl. Phys., 43(8A), 5617 (2004), and Proc. XIX Int. Linear Accelerator Conf., Chicago, p.91 (1998)
- 6) Terunuma, N., et al., NIM A, 613, 1 (2010)
- 7) Deshpande, A., et al., Experimental results of an rf gun and the generation of a multibunch beam, *Physical Review STAB*, **14**(6) (2011), doi:10.1103/ PhysRevSTAB.14.063501
- Yokoyama, Y., *et al.*, Study on Energy Compensation by RF Amplitude Modulation for High Intensity Electron Beam Generated by a Photocathode RF-Gun, Proc. IPAC11, TUPC059 (2011)
- 9) 渡邊謙,他,日本加速器学会誌,9(2),82 (2012)
- Hoffstaetter, G.H., Cornell sprints past milestones towards hard X-ray source, CERN Courier (2012), http://wwwold.jlab.org/FEL/felspecs.html
- Kuriki, M., *et al.*, 1 ms Pulse Beam Generation and Acceleration by Photo-cathode RF gun and Superconducting Accelerator, to be submitted to *Jpn J. Appl. Phys.*
- 12) Hajima, R., et al., NIM A, 507, 115 (2003)
- 13) Nagai, R., et al., Rev. Sci. Instr., 81, 033304 (2010)
- 14) Dunham, B., *et al.*, Performance of the Cornell high-brightness, high-power electron injector, Proc. IPAC12, MOOAA01 (2012)
- 15) Honda, Y., Development of a Photo-injector Laser System for KEK ERL Test Accelerator, Proc. IPAC12, TUPPD056 (2012)
- 16) http://www.hzdr.de/db/, http://jlab.org/FEL/ felspecs.html