Reference to the second second

反跳核分離装置が拓く 新元素の化学

羽場 宏光 Haba Hiromitsu (理化学研究所)

1 はじめに

2012年5月30日,国際純正応用化学連合 (IUPAC)は、114番と116番元素の元素名とし て、フレロビウム (flerovium, 元素記号 Fl) と リバモリウム (livermorium, Lv) を正式に承認 した¹⁾。両元素は、2004年、ロシアフレロフ核 反応研究所(FLNR)とアメリカローレンスリ バモア国立研究所(LLNL)の共同研究グルー プによって、⁴⁸Ca イオンをそれぞれプルトニウ ム (²⁴²Pu) とキュリウム (²⁴⁵Cm) 標的に照射 \downarrow , ²⁴²Pu(⁴⁸Ca, 3n)²⁸⁷114 \succeq ²⁴⁵Cm(⁴⁸Ca, 2n)²⁹¹116 反応によって合成された^{2,3)}。これらの元素合 成実験は、IUPACと国際純正応用物理学連合 (IUPAP)の合同調査委員会 (JWP) によって 審査され、その結果、両元素の命名権は FLNR とLLNLの共同研究グループに与えられた。 元素名フレロビウムは、ロシアの原子核物理学 者で、FLNRの生みの親であるGeorgy N. Flerov (1913~1990年) にちなんで命名された。 一方、リバモリウムは、LLNL があるカリフォ ルニア州の都市名 Livermore にちなむ。今日ま でに,113,115,117並びに118番元素の合成 に成功したという報告もあり、現在、JWP に よって調査が行われている¹⁾。図1に、最新の 元素の周期表(2012年8月現在)を示した。 118 種類もの元素が規則正しく並び,ちょうど 第7周期が完成している。

104 番元素ラザホージウム (Rf) 以降の重い 元素群を、超アクチノイド元素、特に最近で は、超重元素と呼ぶ。超重元素は、すべて重イ オン加速器を利用した核融合反応によって合成 される。化学的性質はもちろん未知で、筆者ら 化学者にとっては魅力あふれる新元素である。 超重元素領域では、大きな原子核電荷によって 電子軌道が大きく変化し(相対論効果),周期 表の族, すなわち縦の並びからは予測もつかな いユニークな性質の出現も期待されている^{4,5)}。 しかし,超重元素の生成率は極めて低く,寿命 は1分間にも満たないくらい短いため、我々が 一度に手にすることができる原子数はわずか1 個である。超重元素の化学は,単一原子の化学 とも呼ばれ、正に究極の微量元素分析といえ る。超重元素の化学的性質については、最近 の総説5-8)によくまとめられているので参照い ただきたい。今日までに、溶液系の化学で106 番元素シーボーギウム (Sg) まで、気相系で 108 番元素ハッシウム(Hs) までと 112 番元素 コペルニシウム (Cn) と FI についての報告が ある。

化学研究の対象となる超重元素の放射性同位 体 (RI) は,²⁴⁸Cm やバークリウム (²⁴⁹Bk) など のアクチノイド元素の標的に、リニアックやサ イクロトロンなどの加速器で加速した¹⁸O や ²²Ne などの重イオンを衝突させ、核融合反応に よって合成される。これまでの実験では、標的 から反跳分離された超重核をヘリウムガス中で 減速させ、ガスジェット法によって気体又は液 体クロマトグラフ装置に運んで化学的性質が調 べられてきた。核種の同定は、超重核のα壊 変や自発核分裂壊変(SF)を測定することによ って行われた。しかし、この実験手法では、超

図1 元素の周期表(2012年8月現在)

2012 年 5 月 30 日,国際純正応用化学連合 (IUPAC)は,114 番元素フレ ロビウム (FI) と 116 番元素リバモリウム (Lv) を発表。113,115,117 並びに 118 番元素の存在は,IUPAC によって正式に承認されていない

重元素 RI とともに大量の副反応生成物が化学 分析装置に導入されるため,超重元素 RI の放 射線計測が妨害され,研究対象とできる元素や 化学実験系が制限されてきた。また,近年,加 速器技術の進歩によって,1 μ A (6.25×10^{12} 粒 子/秒)を超える大強度重イオンビームを利用 できるようになったが,標的チャンバー内に生 じるプラズマが原因となり,化学分析装置への 引き出し効率が激減するという深刻な問題も生 じている。

> このような背景の中. これまで 超重元素の合成・核分光研究に利 用されてきた反跡核分離装置を用 いた超重元素化学研究が注目を集 めている。反跳核分離装置は、重 イオンビームと標的核との核融合 反応で生成した超重核を,磁場や 電場の組み合わせで数マイクロ秒 のうちに選択的に取り出すことが できる。筆者らの研究グループで は、理研 RI ビームファクトリー (RIBF) において次世代の超重元 素化学研究を展開することを目標 に、理研気体充填型反跳核分離装 置 (GARIS) を利用した新しい化 学分析システムの開発を進めてき た⁹⁻¹²⁾。本システムの概略図を図 **2**に示す。GARIS を化学実験の前

段分離装置として利用できれば,目的の超重元 素 RI を低いバックグラウンドの下で化学分析 できる。大強度重イオンビームを利用でき,更 にガスジェット搬送効率を増大できる。また, 重イオンビームの分離除去によって,多様な化 学反応系における実験が可能となる。最近,筆 者らは,化学実験の対象とできる長寿命の ²⁶¹Rf 並びに²⁶⁵Sg を合成し,世界に先駆けて GARIS によって分離,化学実験室まで引き出 すことに成功した¹⁰⁻¹²⁾。本稿では,GARIS ガ スジェットシステムの概要と RIBF における超 重元素化学研究の展望について紹介したい。

2 GARIS ガスジェット法による超重元素 RIの製造

2.1 104 番元素²⁶¹Rfの製造

Rfの化学実験に利用できる²⁶¹Rf^a(半減 期 T1/2=68 s) は, 理研重イオンリニアック (RILAC) で 95.5 MeV に加速した¹⁸O⁵⁺ イオン を厚さ280 µg cm⁻²の²⁴⁸Cm₂O₃標的に照射し, ²⁴⁸Cm⁽¹⁸O, 5*n*)²⁶¹Rf^a*反応によって合成される。 チタン箔 (0.90 mg cm⁻²) 上に分子電着された ²⁴⁸Cm₂O₃標的は,直径 100 mmの円周上に配置 され、照射中、冷却のために 1,000 rpm (回転 毎分)で回転させられる。図2に示したよう に、標的から反跳分離された²⁶¹Rf^aイオンは、 GARIS の4つの電磁石 D1-Q1-Q2-D2(D: 双極 子電磁石;Q:四重極電磁石)によってビーム や副反応生成物から質量分離され, GARIS の 焦点面に導かれる。焦点面には、内径 100 mm、 長さ20mmのガスジェットチャンバーが設置 され. 真空隔壁には厚さ 0.5 µm のマイラー箔 が用いられる。²⁶¹Rf^a イオンは、ガスジェット チャンバー内でヘリウム中(~50 kPa)に捕獲

図3 回転式連続 α 線測定装置 (MANON) の写真 上部フランジを取り外した状態

され、塩化カリウム (KCl) エアロゾルととも に数秒のうちにテフロン細管を通って化学実験 室に引き出される。筆者らは、化学実験室に回 転式連続α線測定装置(MANON)を設置し (図3参照). エアロゾルを厚さ0.5 µmのマイ ラー箔に捕集し、線源に対して上下方向に設置 したシリコン半導体検出器を用いて²⁶¹Rf"の収 量を評価した^{10,11)}。得られた²⁶¹Rf^aのαスペク トルを図4に示す。²⁴⁸Cm標的や標的に極微量 含まれる Pb 不純物から核子移行反応によって 生成する妨害核種は、GARIS によって完全に 分離除去され、261Rf"とその娘核種ノーベリウ ム-257 (²⁵⁷No)のα壊変を低バックグラウン ドの下で観測できた。²⁶¹Rf^aのガスジェット搬 送効率は、6 pµAの大強度ビーム照射時でも約 50%を達成した。また、化学実験室における ²⁶¹Rf^aの製造効率は、1時間当たり約30原子で、 これは GARIS を用いない従来法¹³⁾ に匹敵する 高い値である。

2.2 106番元素²⁶⁵Sgの製造

²⁶⁵Sg は, 117.8 MeV の ²²Ne⁶⁺イオンを ²⁴⁸Cm₂O₃ 標的に照射し, ²⁴⁸Cm(²²Ne, 5*n*)²⁶⁵Sg 反応によっ て合成される。筆者らは, 生成した ²⁶⁵Sg を先 述の ²⁶¹Rf^a と同様に GARIS によって質量分離 し, 化学実験室へガスジェット搬送, MANON を用いて α /SF スペクトロメトリーを行っ た¹²⁾。既報の ²⁶⁵Sg の壊変様式¹⁴⁾ を参考とし,

 ^{* &}lt;sup>261</sup>Rfには、半減期 68 s と 2.6 s の 2 つの核異性体が知られているが、基底状態(²⁶¹Rf)と準安定状態(²⁶¹Rf^m)の区別がついていないため、本稿ではそれぞれ "²⁶¹Rf^{ar}"、"²⁶¹Rf⁶"と表記している(図5参照)。

シリコン検出器7台の積算値。7.687 MeV のピーク は、大気中に含まれる天然放射性核種²²²Rn の娘核 ²¹⁴Poで、MANON のマイラー捕集箔の交換時に検出 器に付着したものである

娘核種との時間相関事象 (α-α 並びに α-SF) を解析した。GARIS ガスジェットシステムが 実現する低いバックグラウンド環境によって. ²⁶⁵Sgに帰属される α - α (- α) 並びに α -SF 相関 事象を明確に観測できた。²⁶⁵Sgのα壊変には, $E_{\alpha} = 8.84 \text{ MeV} \& E_{\alpha} = 8.69 \text{ MeV} の2 つエネルギ$ ーが観測され、それぞれに対して核異性体 265 Sg^{*a*} ($T_{1/2}$ =8.5 s), 265 Sg^{*b*} ($T_{1/2}$ =14.4 s) $\stackrel{\sim}{\sim}$ \square 定することができた。本研究で確立した²⁶⁵Sg の壊変様式を²⁶⁵Sg^{*a,b*} → ²⁶¹Rf^{*a,b*} → ²⁵⁷No → のα壊変鎖として図5に示す。また、本研究 では、²⁴⁸Cm⁽²²Ne, 5n)²⁶⁵Sg^{a,b}反応の断面積を、 それぞれ 180 pb, 200 pb と決定することができ た。これらの²⁶⁵Sgに関する核反応と壊変デー タは、今後のSgの化学研究に向けて重要な情 報である。

3 新元素の化学研究の展望

筆者らが RILAC 施設に開発した GARIS ガス ジェットシステムは、生成率が極めて小さくか つ短寿命の超重元素の化学研究において、低バ ックグラウンドにおける化学実験、大強度ビー

ムの利用とガスジェット搬送効率の増大,更に 多様な化学反応系の実現など,数々のブレイク スルーをもたらすものとして期待されている。 また,AVFサイクロトロン施設には,従来型 ではあるがガスジェット法を利用した超重元素 合成装置が整備され,Rf,105番元素ドブニウ ム (Db) やSgを対象とした化学実験が可能と なっている⁹⁾。筆者らは,これらの基幹設備を 利用し,新元素の化学研究を大きく展開してい く計画である。

筆者らは、国内外の研究者と共同で、様々な 単一原子化学分析装置の開発を進めている。ま ず、気相化学分離装置として、GARIS 直結型 の等温ガスクロマトグラフ装置を開発してい る。この装置では、ビームが GARIS によって 分離除去されるため、GARIS の焦点面に化学 反応部を配置でき、エアロゾル物質を使用せず に高効率かつ迅速に錯形成を行うことができ る。カラム温度の関数として、カラムを通過す る超重元素単体又は化合物の収量を測定し、カ ラムに吸着する温度からそれら化学種の固定相 に対する吸着エンタルピーを導出できる。ま た、本装置を用いれば、有機系の錯形成試薬も ビームに破壊されることなく初めて使用可能と なり、研究対象とできる化合物の種類を飛躍的 に増大することができる。近年,FLNRとドイ ツ重イオン研究所(GSI Helmholtzzentrum für Schwerionenforschung)を拠点として,CnやFl の気相化学研究が競って行われている^{6,15)}。こ れらの実験では,標的から反跳分離された生成 核すべてが低温ガスクロマトグラフ装置に導入 され,元素単体としての揮発性がHgやRnと 比較されてきた。しかし,化学実験の対象とな った²⁸³Cnや^{287,288}Flの原子核データには曖昧さ があり,観測された事象数もわずか数個で,化 学の議論は研究所間で矛盾することもあった。 反応断面積が極めて小さいこれらの元素を対象 とする場合,GARISと組み合わせた気相化学 実験が非常に有効であろう。

溶液化学装置として,大阪大学のグループ は、マイクロ化学チップを利用した液-液抽出 装置とそれに連結した液体シンチレーション計 数装置を開発している^{16,17)}。液体シンチレーシ ョン計数装置は、エネルギー分解能がシリコン 半導体検出器に比べて劣るため,従来法では大 量の副反応生成物からの α 線や β 線が妨害し、 超重元素の実験には利用困難であった。しか し、GARIS ガスジェットシステムでは、妨害 核種を効率良く分離除去できるため、液体シン チレーション計数装置を用いた超重元素の化学 実験が初めて可能となる。大阪大学の小森ら は、既に²⁴⁸Cm(¹⁸O, 5*n*)²⁶¹Rf^{*a*}反応によって ²⁶¹Rf^a を合成し、これを GARIS ガスジェット法 で化学実験室に引き出し、液体シンチレーショ ン計数装置を用いて検出することに成功してい る¹⁷⁾。また、オスロ大学と日本原子力研究開発 機構 (JAEA) の共同研究グループも, 液一液 抽出装置 SISAK¹⁸⁾ を用いた Sg の溶媒抽出実験 の準備を開始している。その他の溶液化学装置 として、JAEA の自動迅速イオン交換(JAEA-ARCA)¹⁹⁾ とフロー電解カラム²⁰⁾,大阪大学の 沈殿線源作成装置²¹⁾などの開発が進められて いる。理研では、これらの化学装置から供給さ れる溶液試料の α/SF 測定を迅速に繰り返し行 うため,図6に示した自動迅速 α/SF 計測装置 を開発している²²⁾。タンタル製の試料皿に捕集 された試料溶液は、ハロゲンランプと高温ヘリ ウムガスを用いて迅速に乾固され、ロボットに よって16台の真空チャンバーに搬送、シリコ ン半導体検出器を用いて α/SF 測定が行われ る。

我が国では、JAEA を中心とする核化学研究 グループによって、イオン交換法による Rfの 詳細な溶液化学研究が行われてきた^{19,23-25)}。自 動迅速イオン交換分離装置(AIDA)を用いて、 塩酸,硝酸,フッ化水素酸,フッ化水素酸/硝 酸並びに硫酸/硝酸系における Rf のイオン交換 挙動や溶媒抽出挙動が詳細に調べられ、Rf の 錯形成反応や化学種に関する貴重な知見が得ら れている。筆者らは、この系統的研究を更に重 いDbやSgに拡大していく計画である。特に Sgの溶液化学は、これまでGSIにおける2報 の報告があるものの,直接的に²⁶⁵Sgの壊変を 捉えた実験はなく, 娘核種²⁶¹Rfと²⁵⁷Noの時間 相関事象に基づいて Sg の化学が議論されてい る⁵⁾。当時の²⁶⁵Sgの壊変データは、筆者らの 最近の研究によって大幅に修正され,長寿命の ²⁶⁵Sg^b や²⁴⁸Cm⁽²²Ne, 5n⁾²⁶⁵Sg^{a,b}反応の断面積が 明らかとなった¹²⁾。今後、世界初ともいえる Sgの溶液化学研究に向けて期待が膨らむ。更 に、イオン交換や溶媒抽出とは異なる新しいア プローチとして, 電気化学的手法の開発も進め

図 6 超重元素の溶液化学研究用自動迅速 α/SF 計測 装置

られている。JAEA の豊嶋らは、作用電極を陽 イオン交換体によって化学修飾したフロー電解 カラムを開発し、No²⁺を No³⁺に酸化すること に成功している²⁶⁾。Sg は、6+や4+の酸化 状態をとることが理論的に予測されており、超 重元素領域では初となる酸化還元電位の測定が 期待される。

4 おわりに

冒頭で新元素の発見や元素の周期表に触れた が、元素の存在限界はどこにあるのか? 次々 発見される新元素はどのような核的・化学的性 質を示すのだろうか? 今後, 119番や120番 元素が発見されれば、周期表に新しい周期、す なわち第8周期が登場する。さらに、121~138 番元素は5g遷移元素と予測され²⁷⁾,人類が初 めてg電子軌道に触れる日も近いかもしれな い。新元素の合成と化学研究分野における我が 国の発展と貢献は目覚ましく、世界のトップレ ベルを進む時代を迎えている。我が国には、新 元素を創り出すことができる世界最先端の加速 器施設がある。筆者らは、世界的財産ともいえ る理研 RIBF を利用し、国際的協力研究の下、 新元素の化学という科学の最も基本的な研究課 題に挑戦していきたい。

【謝辞】

本稿で紹介した研究成果は、日本原子力研究 開発機構先端基礎研究センター、大阪大学大学 院理学研究科、新潟大学理学部化学科、金沢大 学理工研究域物質化学系並びに東北大学電子光 理学研究センターとの共同研究であり、共同研 究者の方々に深く感謝いたします。本研究は、 科研費(16750055, 19002005, 20750053, 23750072)の助成を受けたものです。

参考文献

1) International Union of Pure and Applied Chemistry, News (http://www.iupac.org/).

- Oganessian, Yu. Ts., et al., Phys. Rev. C, 70, 064609 (2004).
- Oganessian, Yu. Ts., et al., Phys. Rev. C, 69, 054607 (2004).
- 4) Pershina, V. G., Chem. Rev., 96, 1977 (1996).
- 5) Schädel, M., Angew. Chem. Int. Ed., 45, 368 (2006).
- Kratz, J. V., "Chemistry of transactinides", in Handbook of Nuclear Chemistry (2nd ed.), edited by Vértes, A., *et al.*, Vol.2, p.925, Springer (2010).
- 7) 永目諭一郎, ぶんせき, No.5, 234 (2009).
- 8) 工藤久昭, ぶんせき, No.12, 678 (2009).
- 9) Haba, H., et al., Eur. Phys. J. D, 45, 81 (2007).
- 10) Haba, H., et al., Chem. Lett., 38, 426 (2009).
- 11) Haba, H., et al., Phys. Rev. C, 83, 034602 (2011).
- 12) Haba, H., et al., Phys. Rev. C, 85, 024611 (2012).
- 13) Nagame, Y., et al., J. Nucl. Radiochem. Sci., 3, 85 (2002).
- 14) Düllmann, Ch. E. and Türler, A., *Phys. Rev. C*, **77**, 064320 (2008).
- 15) Eichler, R., et al., Radiochim. Acta, **98**, 133 (2010).
- 16) Ooe, K., et al., J. Nucl. Radiochem. Sci., 8, 59 (2004).
- 17) Komori, Y., et al., RIKEN Accel. Prog. Rep., 43, 267 (2010).
- 18) Omtvedt, J. P., et al., Eur. Phys. J. D, 45, 91 (2007).
- Nagame, Y., et al., Radiochim. Acta, 93, 519 (2005).
- 20) Toyoshima, A., et al., Radiochim. Acta, **96**, 323 (2008).
- 21) 笠松良崇, 他, 日本化学会第 92 春季年会, 横 浜, 2012 年 3 月 26 日.
- 22) Haba, H., et al., RIKEN Accel. Prog. Rep., 45 (in press).
- 23) Toyoshima, A., et al., Radiochim. Acta, **96**, 125 (2008).
- 24) Ishii, Y., et al., Bull. Chem. Soc. Jpn., 84, 903 (2011).
- 25) Li, Z. J., et al., Radiochim. Acta, 100, 157 (2012).
- 26) Toyoshima, A., *et al.*, *J. Am. Chem. Soc.*, **131**, 9180 (2009).
- 27) Pyykkö, P., Phys. Chem. Chem. Phys., 13, 161 (2011).

本テーマの企画:日本アイソトープ協会理工学部会・