Cell cycle dependency of ¹⁸F-Choline uptake during proliferation of cultured human cancer cells

M. Shozushima, J. Yamamoto, Y. Hara*¹, K. Terasaki*², S. Goto*³ and R. Iwata*⁴

Department of Dental Radiology, School of Dentistry, Iwate Medical University

19-1 Uchimaru, Morioka, 020-8505

*¹ Department of Oral Surgery, School of Dentistry, Iwate Medical University

19-1 Uchimaru, Morioka, 020-8505

*² Cyclotron Research Center, Iwate Medical University

19-1 Uchimaru, Morioka, 020-8505

*³ Nishina Memorial Cyclotron Center, Takizawa Institute, Japan Radioisotope Association

348-58 Tomegamori, Takizawa, 020-0173 Japan

*⁴ CYRIC Tohoku University

Aramaki, Aoba-ku, Sendai 980-8579, Japan

Abstract

Recently [¹⁸F] labeled choline ([¹⁸F] Choline) has been developed as a promising tracer for cancer detection; including ones found in the lung, prostate gland, head and neck regions. The experimental study demonstrated [¹⁸F] Choline uptake was higher in faster-growing rather than in slower-growing tumors. However, the precise mechanism remains to be elucidated. In this study, the relationship between [¹⁸F] Choline uptake and the cell cycle phase in cultured human cancer cells (HeLa S3), as well as how they compare to the conventional tracer [¹⁸F] FDG with PET was assessed. Synchronization of HeLa S3 cells was accomplished via a double thymidine block. Flow cytometry (FCM) was used to determine the relative DNA contents of cells to check the degree of cell synchronization. The uptake of [¹⁸F] Choline and [¹⁸F] FDG was determined after cell cycle synchronization.FCM findings confirmed that the cells were well synchronized. [¹⁸F] Choline uptake was 87% of the peak level in the early S-phase immediately after release, gradually increased, and peaked in the G2/M phase. Subsequently, [¹⁸F] Choline uptake steeply declined over the late G2/M phase to 58% in the G1 phase. The results suggest that the uptake of [¹⁸F] Choline is cell cycle dependent, is associated with the proliferative activity of the tumor seen during PET imaging.