Pathophysiology of hepatic encephalopathy: exploratory study using ¹³N -ammonia PET

Yuki Watanabe¹, Kei Sahara¹, Takayosi Oikawa¹, Hiroya Takahashi¹, Kazuyuki Suzuki¹ Akinobu Kato^{1,2}, Tosihaki Sasaki³, Kazunori Terasaki³ and Kouichiro Sera³

¹Iwate Medical University, Department of Internal Medicine, Devision of Gastroenterology and Hepatology 19-1 Uchimaru, Morikoka, Iwate 020-8505, Japan

> ²Morioka Municipal Hospital 15-1 Motomiya-aza-Koyasiki, Morioka, Iwate 020-0866, Japan

³Cyclotron Research Center, Iwate Medical University 348-58 Tomegamori, Takizawa, Iwate 020-0173, Japan

Abstract

Increased blood ammonia in patients with liver cirrhosis is key factor to develop hepatic encephalopathy (HE). But, the pathophysiology of hyperammonemia-induced HE still do not have been fully understood. Nishiguchi et al. reported the evaluation of ammonia metabolism in the skeletal muscles of patients with cirrhosis using N-13 ammonia positoron emission tomography (PET) before and after branched-chain amino acids (BCAAs) administration. Thus our aim is to clarify the regional cerebral ammonia metabolism before and after BCAAs administration. We are going to undertake N -13 ammonia PET of brain of cirrhotic patients before and after BCAA-enrich infusion, that are used as a treatment for hyperammonemia in Japan. Simultaneously, we are going to conduct neuropsychiatic tests, to consider the mechanism of HE by analysing the results and patient's biochemical profiles.