

新しい素粒子物理を中性 K 中間子崩壊で探る J-PARC KOTO 実験

山中 卓 Yamanaka Taku

1 探し物

1.1 何を探しているのか

口の悪い人は、Nothing to nothing と言う。素粒子 の理論屋は黄金モードだと言う。中性の長い寿命の K 中間子が中性の π 中間子とニュートリノ対に壊れ る崩壊 $K_L \rightarrow \pi^0 \nu \overline{\nu}$ を我々は探している。親の K_L は 電荷を持たないので、見えない。崩壊でできる $\nu \overline{\nu}$ 対 もめったに反応しないので、もちろん見えない。残 りの中性 π 中間子は瞬時に $\pi^0 \rightarrow \gamma \gamma$ 崩壊する。観測 できる粒子はその 2 つの γ 線のみである。Nothing to nothing と言われるゆえんである。

1.2 なぜ探しているのか

ではなぜ、ほとんど手がかりのないような崩壊を 見ようとしているのか。それは、今の素粒子の標準 理論の枠組みを超える、より大きな素粒子の世界の 糸口をつかむためである。

現在,クォークやレプトン,力を運ぶボゾン,粒 子の質量を決めるヒッグス粒子等,素粒子の世界は 「標準理論」というものにまとめられ,一見良く理 解できているかのように見える。しかし,なぜ宇宙 に反物質がほとんどないのか,ダークマターの正体 は何か等,まだまだ謎だらけである。これらの謎は 標準理論では説明できないため,標準理論を超える, より大きな素粒子の体系があるはずである。そうし た体系に属する素粒子は宇宙の初期には存在してい たはずにもかかわらず今見つからないのは,それら が重く,既に軽い粒子に崩壊してしまったからである。

これらの未発見の重い素粒子を探す方法には2種 類ある。1つは、エネルギーと質量の等価性 $E=mc^2$ を用い、高いエネルギーの粒子同士を正面衝突させ て、重い新粒子を作る方法である。もう1つは、不 確定性原理 $\Delta E\Delta t > \hbar/2$ を用いて、一瞬(Δt)だけ 大きな質量(ΔE)の粒子が介在する反応を探す方法 である。この方法では、加速器のエネルギーに制限 されることなく、はるかに重い粒子を探せる。

ただし、後者の反応は稀にしか起きないため、非 常に高い感度の実験が必要となり、ノイズの小さな 環境で探す必要がある。例えばかすかな音を聞こう とすると、ノイズが小さく、かつそのノイズの音量 が良く分かっている必要がある。そのために、新し い素粒子が介在する可能性のある反応として我々が 選んだのが、 $K_L \rightarrow \pi^0 v \bar{v}$ 崩壊である¹⁾。標準理論で はこの崩壊の崩壊分岐比の予測は約3×10⁻¹¹と非 常に小さい上に、メカニズムが単純なために理論的 な誤差も小さい。したがって、この崩壊を発見し、 その分岐比の測定値が標準理論の予測と異なってい れば、新しい素粒子が介在していることの証拠とな る。黄金モードと言われるゆえんである。

1.3 探す方針

では、nothing to nothing と言われる崩壊をどのよう にして同定するのか。まず、観測できる粒子は γ 線 2 個である。また、ニュートリノ対が運動量を持ち 去るため、2 個の γ 線の運動量の和は、親の K_L の運

図1 KOTO 実験装置の断面図

 K_{ι} ビームは図の左から実験装置内に入る。 $K_{\iota} \to \pi^{0} \nu \overline{\nu}$ 崩壊でできた2個の7線はCsI結晶2,700本からなる電磁カロリメータ(CSI)で検出する。その他の7線は、崩壊領域を覆う、鉛とシンチレータを積層した検出器(MB, NCC, FB)で検出する。電磁カロリメータ中央の穴を抜けた7線は、CsI結晶を積み上げた検出器(CC04-CC06)、鉛とエアロジェルチェレンコフカウンターの列(BHPV)で検出する。また、荷電粒子はシンチレータ(CV, BCV, LCV, Hinemos)、ビーム中に設置したガスチェンバー(newBHCV)で検出する。

動量と異なる。これが $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 崩壊の特徴である。 稀な崩壊を探すときの一番の難しさは、異なる反応であるにも関わらず、あたかも信号と見えてしまう、背景事象である。例えば、 $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 崩壊からできる4個の γ 線のうち2個を見失ってしまうと、これは背景事象となる可能性がある。また、 $K_L \rightarrow \pi^+\pi\pi^0$ 崩壊の荷電パイオン π^+ と π を見失う、検出器にたまたま入った中性子を γ 線を見誤る等、様々な可能性がある。 K_L と $\pi^0 \rightarrow \gamma \gamma$ 以外の K_L 粒子の崩壊モードは4個以上の γ 線、もしくは2個以上の荷電粒子を含むため、余分な粒子は確実に検出してその事象を捨てる必要がある。

考えうる背景事象に対する対策はすべて打って実 験を設計するが、思いもつかないような非常に稀な 現象によって起きる背景事象もある。そのため、一歩 一歩学びながら実験を進めて行く必要がある。稀な 崩壊の実験は背景事象との戦いでもある。

2 KOTO 実験装置

上記の方針によって我々が行なっているのが、茨 城県東海村にある J-PARC の 30 GeV 大強度陽子加 速器を用いた KOTO (K0atTOkai) 実験である。こ れは日本、米国、台湾、韓国、ロシアの国際協力実 験である。この実験の原型は、KEK の 12 GeV 陽子 加速器を用いた KEK E391a 実験である。E391a 実 験は $K_L \rightarrow \pi^0 v \bar{v}$ 崩壊の分岐比に対して 2.6 × 10⁻⁸ と いう上限値を与えた²⁾。KEK よりはるかに大強度 の J-PARC の 30 GeV 陽子ビームを用い、感度を大 幅に上げたのが J-PARC KOTO 実験である。

2.1 ビームライン

大強度の KL ビームは、加速器から引き出した陽子 ビームを標的に当て、16 度方向にコリメータを 2 台 設置して作る。コリメータの穴の形を工夫し、ビー ムの裾野の広がりを E391a 実験より更に抑えた。コ リメータの間には電磁石で磁場をかけ、荷電粒子を 排除する。 γ 線は、上流に置いた鉛の塊で反応させ、 取り除く。標的から約 20 m 下流の測定器に入るビー ムの主な成分は K_L と中性子である。

2.2 測定器

測定器の断面図を図1に示す。実験では、図中の 3~5mの範囲(崩壊領域)で崩壊した事象を探す。 ほとんどの検出器は大きな真空容器の中に入ってい る。これは、ビームパイプ等の物質が崩壊点と検出 器の間にあると、そこでγ線が反応して失われ、背 景事象の原因となるためである。

2個のγ線を見るために

 $\pi^{0} \rightarrow \gamma \gamma$ 崩壊の2個の γ 線を観測するために,崩 壊領域の下流に直径2mの電磁カロリメータがあ る。E391a実験では、長さ30cmで7cm角のCsI 結晶を用いていたが、KOTO実験ではこれらを約 2,700本の長さ50cm(27放射長、X₀)の、CsIの結 晶に置き換えた。中央の1.2m角の領域には2.5cm 角の結晶、その外側には5cm角の結晶を並べてい る。レートの高い環境で用いるため、減衰時間の短 い、TIの入っていないCsIを用いている。 γ 線が入 射して発生したシンチレーション光を、下流側に取 り付けた光電子増倍管で読み出し、エネルギーと入 射位置を測定する。ビームがカロリメータに当たる とカロリメータのレートが高くなりすぎるため、カ

ロリメータの中心には穴を空け、ビームを素通りさ せる。

余分なγ線を検出するために

カロリメータに入射したγ線以外にγ線がないこ とを要求するために,崩壊領域のほぼ全方向をγ線 検出器で覆っている。

まず,崩壊領域の横方向は,内径約2m,長さ5m の円筒形の検出器(MB)で覆っている。これは E391a実験用に鉛とシンチレータを積層して作っ た,厚みが13X₀の検出器である。

また、2016年には検出器の厚みを増やすために、 MBの内側に厚さ5X₀、長さ3mの円筒形状のγ線 検出器(IB)を新たに製作し、挿入した。

更に、電磁カロリメータ中心の穴を通り抜けるγ線 を検出するために、下流に検出器を並べている。角 度を持ってビームの外に出てくるγ線は、ビームを 取り囲むように CsI の結晶積み上げた検出器(CC04-CC07)で捕らえる。ビーム中に残るγ線を検出す るため、鉛とエアロジェルを組み合わせた新しい チェレンコフカウンター(BHPV)を並べ、γ線が 対生成で作った電子を捕らえる。

荷電粒子を検出するために

荷電粒子を検出するために、電磁カロリメータの 前面は、厚み3mmのシンチレータを2層(CV)で 覆っている。円筒形のγ線検出器の内側もプラス チックシンチレータで覆っている。また、カロリメ ータ下流のビーム中に逃げる荷電粒子を検出する ためには、物質量の小さいワイヤーチェンバー (newBHCV)を入れている。

中性子を見誤らないために

裾野を抑えたビームを作っているが,それでもま だビームの外側を飛んでくる中性子がある。このよ うな中性子が電磁カロリメータに入射してシャワー を作り,そこで反応してできた中性子がまた別の場 所でシャワーを起こすと,これを2個のγ線と見誤 り,背景事象となる場合がある。そこで,中性子と γ線が作るシャワーの形の違い等を用いて,中性子 起源の背景事象を排除する。このためには,最近流 行のニューラルネットの手法も取り入れた。

更に中性子起源の背景事象を落とすため,2017年 には、電磁カロリメータを大改造した。γ線は電磁 相互作用によって上流部分で反応するのに対し、中 性子は強い相互作用によって長さ50 cmの結晶中の どこででも反応する。そこで、CsIの結晶の上流面 に薄い半導体の光検出器を接着し、この光検出器と 下流側の光電子増倍管の信号の時間差から、反応の 奥行きを測定する。これにより、中性子の背景事象 を更に 1/30 に落とすことができた。結晶でこのよ うな手法を用いたカロリメータは、知る限り世界初 である。

2.3 データ収集システム

KOTO 実験の測定器からは約4,000 本の信号線が 出ている。これらの信号はすべて ADC モジュール に送る。ほとんどの信号は 8 ns おきに 14 bit に、高 いレートの検出器からの信号は 2 ns おきに 12 bit に デジタル化する。このデジタル化された情報を用い て、8 ns おきにその事象の取捨選択を行い、有効な 事象については全信号の波形を読み出す。また, 8 ns 間隔にデジタル化する ADC モジュールでは、 あえてパルスを広げてパルスの中でデジタル化する 点を増やし、1 ns の時間分解能を得ている。またこ の ADC モジュールには、電子回路を自由に書き換 えられる FPGA を搭載しており、様々な機能を後 から追加した。例えば、2018年からは、電磁カロ リメータ上のシャワーの数を数え、事象の取捨選択 に用いるようにした。この ADC モジュールはシカ ゴ大学が開発した。

測定器から並列に読み出されたデータは、ネット ワークスイッチと CPU のサーバーを通して1事象ご とにまとめ、KEK の計算機センターに高速ネット ワークを通して送り、そこで磁気テープに保存する。

2.4 データ収集

長年にわたるビームラインと実験装置の建設の 後,2013年に初めてデータを収集した。ただし、デー タ収集を開始してからすぐに、J-PARCハドロンホー ルで放射線事故があり³⁾,100時間でデータ収集を 終えた。しかし、それだけの時間のデータでも、約 6か月かけてデータを収集したE391a実験と同程度 の感度を得ることができた。J-PARCのビーム強度 が高い成果である。2年がかりのハドロンホールの 改修の後,2015年にデータ収集を再開し、毎年、ビー ム強度を上げながらデータを収集している。

3 データ解析

電磁カロリメータで得た2つのγ線がπ[®]から崩

壊してできたならば、2つの γ 線の不変質量が π^{0} の 質量と等しいことを用いて、2つの γ 線の方向の間 の開き角が決まる。更に崩壊がビーム軸上で起きた と仮定すると、崩壊位置(Z_{vtx})が求まる。その崩 壊位置と電磁カロリメータ上の γ 線のエネルギーか ら、元の π^{0} の運動量を求め、 π^{0} の運動量のビーム 軸と垂直な成分を P_{r} とする。この $Z \ge P_{r}$ の2次元 平面上に、信号領域を設定する。

データ解析では, blind analysis という手法を用い ている。解析で信号領域に残る事象は少ないはずで あり、残った事象の特徴を見てしまうと、故意でな くとも,事象選別にバイアスをかける可能性がある。 そのような人為的なバイアスの可能性を一切省くた め、信号領域の中の事象は見えないような仕掛けを する。様々な背景事象は信号領域の外にも分布する ため、カットを緩める等して、予測する背景事象数 とデータの事象数が合うかどうか等を調べ、見えな い信号領域内の背景事象数が十分小さくなるように カットを決める。長い時間をかけてこのような地道 な作業を続けた後、コラボレーション全員の合意の もとで信号領域内を見る。まさに箱を開ける感覚で ある。2015年に収集したデータの解析の結果,図2 に示すように、信号領域内に事象はなかった。これ をもとに、崩壊分岐比に対して 3.0 × 10⁻⁹ (信頼区) 間 90%) という結果を出した⁴⁾。これは, E391a が 出していた世界記録を1桁更新する結果である。

現在,2016年以降に収集したデータの解析と理 解を進めている。

4 将来

2021年に予定されている加速器の改良等により, ビームパワーは今の50kWから約100kWまで段階

図 2 2015 年に収集したデータから再構成されたπ[®]の崩壊位 置(Z_{tr})と運動量の横方向成分(*P*_t)の分布[®]

誤差なしの数字は観測された事象数,誤差付きの数字は予測された背景事 象数。中央の5角形が信号領域を表す。それを含む中央の長方形の領域を 隠して解析した

的に上がっていく。それに伴い,感度も上がり, 2025年ごろには10¹¹桁台まで行く予定である。こ れにより,標準理論の予測から大きく外れる場合に ついて検証することができる。しかし,それよりも 更に2桁高い感度の実験の検討も始めている。これ ができれば,10%程度のずれも検証することができ るようになる。大発見を狙い,蓄積してきた経験を もとに工夫を重ね,更に一歩一歩着実に探索を進め て行く予定である。

参考文献

- 1) L. S. Littenberg, Phys. Rev. D, 39, 3322 (1989)
- 2) J. K. Ahn, et al., Phys. Rev. D, 81, 072004 (2010)
- 3) 小松原健,高エネルギーニュース,34,56 (2015)
- 4) J. K. Ahn, et al., Phys. Rev. Lett, **122**, 021802 (2019)

(大阪大学大学院理学研究科)