

X 線結晶構造解析が解き明かす 一かごタンパク質のガス放出—

 藤田
 健太
 上野
 隆史

 Fujita Kenta
 Ueno Takafumi

 (東京工業大学大学院生命理工学研究科)

1 はじめに

タンパク質はアミノ酸が規則的に折り畳まれ ることによって、10⁻⁸~10⁻⁷ nm サイズの特異 的な三次元構造を有する分子構造体である。さ らに、このタンパク質分子が自己的に集合し、 "タンパク質集合体"と呼ばれる超分子構造が 形成される。天然においてタンパク質集合体 は、生体機能を維持するために重要な役割を 担っている。例えばフェリチン(Fr)と呼ばれ るかご型タンパク質は生体内の鉄の貯蔵を、ウ イルスケージはウイルスのゲノム DNA の保持 等、種々の分子を内包する機能を有しており、 そのサイズは、数十~数百 nm である(図1)¹¹。

筆者らの研究グループでは以前より,かご型 の構造を有する Fr 内部への有機金属錯体の集 積化及び新規触媒分子としての利用を報告して きた。有機金属錯体はそれ自身で多様な化学反 応を触媒する能力を有しているが,水に溶けに くい,長期保存性に乏しい等の欠点がある。こ れらを克服できれば、環境触媒やバイオ応用の 可能性が拓けてくる。その解決策として、Fr のかご内部への有機金属錯体の集積を検討して きた。その際、金属錯体がFr内部に集積した 構造を決定することは、分子機能を設計する上 で必要不可欠であり、大型放射光施設を利用し た高分解能のX線回折像取得により、金属の 結合位置やアミノ酸残基との距離、角度といっ た詳細な構造情報を得ることで、錯体の化学的

な反応性を議論することが可能となる^{2,3)}。

また,これまでに薬剤や金属ナノ粒子とFr の複合体を細胞内へ送り込む試みがなされてき た⁵⁾。その理由は,Frを用いることにより,内 包分子の毒性を低減させたり,細胞への輸送効 率を向上させたりすることが可能なためであ る⁶⁾。本研究では前述したFrの特徴に着目し, 金属カルボニル錯体の細胞内輸送法を開発し た。

金属カルボニル錯体とは、一酸化炭素 (carbon monoxide: CO) を配位子に持つ金属錯体であ る。従来は化学工業的な触媒分子として利用さ れてきたが、2002年に R. Motterilini のグルー プによって CO 放出分子 (carbon monoxide releasing molecules: CORMs) としての利用が 報告されて以来、哺乳類の細胞やマウス等の生 物に対して CO を輸送する手法としても利用さ れている^{7,8)}。生体中のCOの役割は、血中に 存在するヘモグロビンタンパク質に結合してい る酸素と置き換わることにより、その酸素運搬 能を阻害し, 生体に対して毒性を引き起こすと 考えられている。しかし、低い濃度では、細胞 の機能を維持するために、薬として働くことも 最近の研究により分かってきた。具体的には前 述した CORMs によって CO の血管の弛緩作用 や細胞保護作用が見いだされてきた⁹。しかし, CORMs による輸送の場合、(1)細胞環境下で の CORMs の安定性が低く, CO の放出速度が 非常に早いといった点や、(2)細胞外から天然 には存在しない金属を送り込むため、細胞の生 存を脅かすような毒性を引き起こすといった問 題点が確認されている⁹⁾。これらの問題点を解 決し、生細胞内での詳細な CO の機能を探索す るためには CORMs を安定に輸送するテンプレ ート分子の開発が必要となる。そこで筆者らは FrへのCORMsの内包による、新規細胞内 CORMs 輸送材料の合成を試みた⁴⁾。

2 研究内容

2.1 野生型 Fr へのカルボニル錯体の内包

トリス緩衝溶液中で、ルテニウムカルボニル 錯体(RuCO)分子と野生型 Fr を反応させるこ とによって、RuCOをFrに内包した複合体1 を合成した。1はタンパク質結晶を得る一般的 な手法であるハンギングドロップ法により結晶 化させた。大型放射光施設 SPring-8 ビームラ インBL38B1を用いてX線回折像を取得し. 2.00 Å の分解能で同定した。図2(a) に1の全 体構造とRu原子の集積の詳細構造を示す。1 の内部に複数のRu原子が確認できた。さらに、 図2(b) にはFrのかご構造を形成している24 個の単量体のうち1つの結晶構造を示した。単 量体上では、3つのRu結合サイトが確認され た。これらのより詳細な構造を図3に電子密度 とともに示す。3つの結合サイトの構造は次の ように説明できる。

サイト1 (Ru1) では, Glu45 のカルボキシル 側鎖 (Fr を構成するアミノ酸配列のうちN末

図 2 複合体 1 の X 線結晶構造。(a) Fr 全体構造における Ru 原子(図中 緑球)の結合,(b) Fr 単量体における Ru 原子の結合サイト

図3 Ru 結合サイトの拡大図:結合サイト1(a),サイト2(b),サイト3(c) オレンジ色の球はカドミウム原子を,赤色の球は酸素 原子を示す.また,Ru由来の電子密度をピンク色の 網線で,その他のアミノ酸由来の電子密度を灰色の斜 線で示した

端側から数えて45番目の意)とCys48のチオ ール側鎖の間へ挟まれるような結合が形成され ている。Ru原子へは水分子(W1)及び2つの CO配位子(CO1,CO2)の結合も確認できる。 サイト2では,His114のイミダゾール側鎖 とGlu130のカルボキシル側鎖の間へ挟まれる ような結合が存在する。Ru2へは水分子(W2) が結合している。Glu130 のカルボキシル側鎖 へは,結晶化溶液に含まれるカドミウム原子 (Cd1)も配位していることが明らかとなった。 サイト3 (Ru3)では,His132のイミダゾール 側鎖への結合が見られた。

このように,X線結晶構造解析を行うことに よって,外部から導入したRu錯体のFr内部 のアミノ酸残基への結合構造を明らかにした。 次に,Ruが結合するアミノ酸残基の種類を変 えることによって,CO放出量の増加を期待し, Fr 変異体の合成を検討した。

2.2 変異型 Fr の設計

Frを構成するアミノ酸残基は,既存の遺伝 子工学的な手法を用いることにより変換でき る。本研究では,2つの変異型Frを作製した (図4)。

1つはGlu45をCysに、Cys48をAlaに置換 したGlu45Cys/Cys48Ala-Frであり、もう1つ はArg52をCysに置換したArg52Cys-Fr変異体 である。これらを野生型と同様にRuCO 錯体 と複合化し、X線結晶構造解析を行った。

2.3 変異型 Fr への RuCO 錯体の内包

図5(a) に得られた結晶構造を示す。 Glu45Cys/Cys48Ala-FrとRuCOの複合体(複合 体2)では変異導入したCys45上に2個のRu の集積が確認された(Ru4, Ru5)。Ru4-Ru5間 の距離が2.71Åであることから,Ru-Ru間の 結合を有するクラスター構造が形成されている と推定できる。この構造は,Ru5がHis49へ結 合することにより安定化される。つまり, Glu45Cys/Cys48Ala-Fr変異体を用いることで, 新たにCys-Ru-Hisの結合を形成させ,Ruの結 合数を増加させることに成功した。

一方で、Arg52Cys-FrとRuCOの複合体(複合体3)についても、同様に配位構造の異なるRuとRuの結合数の増加が同定された(図5(b))。Ru6は野生型と同様にGlu-Ru-Cysの結合を有し、Ru7はCys48とCys52に結合している。Arg52Cys-Frをテンプレートとすることによって、Cys-Ru-Cysの構造が作られている

図4 Fr 変異体の設計
 Fr 単量体の構造のうち、アミノ酸を置換した領域のみを示した

図 5 変異型 Fr と RuCO 錯体との複合体の結晶構造。 (a) 複合体 2, (b) 複合体 3

ことを明らかにした。

このように, X線結晶構造解析で得られた構 造を基に変異型タンパク質を設計し, 異なる結 合様式を持つ複合体を合成することができた。

2.4 Fr-RuCO 複合体の CO 放出 特性

CO ガスの放出は、ミオグロビン を用いたアッセイにより評価した。 ミオグロビンはその構造内にヘムを 有し、そのヘムへの CO の結合によ る紫外可視吸収スペクトルの変化か ら CO の放出量を定量できる。スペ クトルの時間変化追跡から CO 放出 速度の半減期と Ru 一原子当たりの 放出量を算出した(表1)。また、 Motterlini らが 2003 年に合成し、汎 用 性 の 高 い CORM の 1 つで ある CORM-3 との CO 放出特性も比較し た。

Fr-RuCO 複合体 1~3 は CORM-3 に比べ, 18 倍ゆっくりと CO を放出することが分かった。 これは, CO 放出の反応点が Fr の分子かごに 保護されているためだと考えられる。また, 2 は1,3よりも2倍多くの CO を放出している ことが明らかとなった。これは,2が有してい る Cys-Ru-His の構造が影響していると推定で きる。

2.5 細胞内の Fr-RuCO 機能

本研究では、細胞内のタンパク質発現を調節 し、細胞を保護する役割を担う核転写因子の一 種である Nuclear factor- κ B (NF- κ B) の活性に CO が与える影響を評価した。プレート上に生 育させた HEK293 細胞(ヒト胎児腎細胞)へ 複合体 1~3 及び CORM-3 を混合し、12 h 経過 後の NF- κ B の活性を発光測定により測定した (図 6)。CORM-3 よりも複合体 1 と 3 は 2.5 倍, CO 放出量の多い複合体 2 で は更に4倍, NF- κ B を活性化した。Fr-RuCO 複合体を用い ることによって、(1) CO 放出速度を遅くする こと、(2) より多くの CO を細胞内へ送り込む ことが NF- κ B の活性化に重要であることを新 たに見いだした。

表1 複合体の CO 放出速度半減期及び CO 放出量

Composites	$t_{1/2}/\min$	Release amounts of CO/Ru
1	37.3 ± 0.5	0.08 ± 0.01
2	36.2 ± 0.6	0.17 ± 0.03
3	36.0±0.2	0.08 ± 0.02
CORM-3	2.2 ± 0.2	0.60 ± 0.06

図6 CO 放出フェリチン複合体の HEK 細胞への導入 及び CO 放出, NF-κB への作用のイメージ図

3 今後の展望

今回紹介した研究では、CORM を安定に細 胞内へ輸送するために、Fr を利用するという 点に焦点が当てられたが、CO の細胞内機能に 関してはいまだに不明な点が多く残されてい る。特にいつ、どこで、どれだけの CO が必要 かについてはほとんど議論がなされていない。 現在は CO を放出するタイミングや量を外部刺 激によって調節する系の構築に努めており、そ れが実現すれば従来の薬剤分子の合成設計とは 全く異なる手法で、医薬品開発へ寄与できると 考えられる。

筆者らのグループでは,前述したFrを用い た系以外にも結晶状態のタンパク質集合体によ る CO 輸送について報告している^{9,10)}。これら 一連のタンパク質集合体をキャリアとした手法 の開発は,カルボニル錯体の反応性の制御とい う化学的な視点と,ガス状分子による生理機能 の調節という生物学的な視点を併せ持つ学際領 域の研究である。その詳細な議論を可能にして いるのは、タンパク質と金属分子との複合化反 応の技術と、タンパク質 X線結晶構造解析技 術の進展であり、今後 CO輸送以外の研究分野 においてもこれらの手法を上手く活用して、生 体内で有効に機能する様々な分子の精密合成が 進められていくと期待される。

【謝辞】

本研究は全て東京工業大学大学院生命理工学 研究科の筆者の研究室と同研究科の近藤研究室 との共同研究の成果である。また,内閣府の最 先端・次世代研究開発支援プログラム(課題番 号 LR019)の研究助成により行われた。タン パク質結晶のX線回折データ取得は,SPring-8 ビームラインBL38B1(課題番号 2013B1262, 2013B1382)及び,名古屋大学超強力X線回折 実験室において行われた測定で取得した。この 場を借りて共同研究者の皆様に深く感謝いたし ます。

参考文献

- Maity, B., et al., Curr. Opin. Chem. Biol., 25, 88– 97 (2015)
- Abe, S., et al., J. Am. Chem. Soc., 130, 10512– 10514 (2008)
- Abe, S., et al., J. Am. Chem. Soc., 131, 6958–6960 (2009)
- Fujita, K., et al., J. Am. Chem. Soc., 136, 16902– 16908 (2014)
- 5) Ueno, T., et al., Chem. Asian J., 8, 1646–1660 (2013)
- Liu, X., et al., J. Mater. Chem., 21, 7105–7110 (2011)
- 7) Motterlini, R., et al., Circ. Res., 90, 17–24 (2002)
- Romao, C.C., et al., Chem. Soc. Rev., 41, 3571– 3583 (2012)
- Garcia-Gallego, S., et al., Angew. Chem. Int. Ed., 53, 9712–9721 (2014)
- 10) Tabe, H., et al., Inorg. Chem., 54, 215–220 (2014)
- 11) Tabe, H., et al., Chem. Lett., in press